{"title":"Greener Method for the Application of TiO<sub>2</sub> Nanoparticles to Remove Herbicide in Water.","authors":"Hoang Hiep, Pham Tuan Anh, Van-Duong Dao, Dang Viet Quang","doi":"10.1155/2023/3806240","DOIUrl":null,"url":null,"abstract":"<p><p>TiO<sub>2</sub> nanoparticles have emerged as a great photocatalyst to degrade organic contaminants in water; however, the nanoparticles dispersed in water could be difficult to be recovered and potentially become contaminant. Herbicide like 2,4-dichlorophenoxyacetic acid (2,4-D) used in agriculture usually ends up with a large fraction remaining in water and sediment, which may cause potential risk to human health and the ecosystem. This study proposes a greener method to utilize TiO<sub>2</sub> as photocatalyst to remove 2,4-D from water. Accordingly, TiO<sub>2</sub> nanoparticles (10-45 nm) were synthesized and grafted on lightweight fired clay to generate a TiO<sub>2</sub>-based floating photocatalyst. Experimental testing revealed that 60.2% of 2,4-D (0.1 mM) can be decomposed in 250 min under UV light with TiO<sub>2</sub>-grafted lightweight fired clay floating on water. Degradation fits well into the pseudo-first-order kinetic model. The floating photocatalysts can degrade approximately 50% 2,4-D in 250 min under sunlight and the degradation efficiency is stable for cycles. The results revealed that the fabrication of floating photocatalyst could be a promising and greener way to remove herbicide contaminants in water using TiO<sub>2</sub>.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/3806240","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
TiO2 nanoparticles have emerged as a great photocatalyst to degrade organic contaminants in water; however, the nanoparticles dispersed in water could be difficult to be recovered and potentially become contaminant. Herbicide like 2,4-dichlorophenoxyacetic acid (2,4-D) used in agriculture usually ends up with a large fraction remaining in water and sediment, which may cause potential risk to human health and the ecosystem. This study proposes a greener method to utilize TiO2 as photocatalyst to remove 2,4-D from water. Accordingly, TiO2 nanoparticles (10-45 nm) were synthesized and grafted on lightweight fired clay to generate a TiO2-based floating photocatalyst. Experimental testing revealed that 60.2% of 2,4-D (0.1 mM) can be decomposed in 250 min under UV light with TiO2-grafted lightweight fired clay floating on water. Degradation fits well into the pseudo-first-order kinetic model. The floating photocatalysts can degrade approximately 50% 2,4-D in 250 min under sunlight and the degradation efficiency is stable for cycles. The results revealed that the fabrication of floating photocatalyst could be a promising and greener way to remove herbicide contaminants in water using TiO2.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.