Illuminating bunyavirus entry into host cells with fluorescence.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Microbiology Pub Date : 2024-04-01 Epub Date: 2023-09-13 DOI:10.1111/mmi.15165
Yu Gu, Pierre-Yves Lozach
{"title":"Illuminating bunyavirus entry into host cells with fluorescence.","authors":"Yu Gu, Pierre-Yves Lozach","doi":"10.1111/mmi.15165","DOIUrl":null,"url":null,"abstract":"<p><p>Bunyavirales constitute the largest order of enveloped RNA viruses, many members of which cause severe diseases in humans and domestic animals. In recent decades, innovative fluorescence-based methods have paved the way to visualize and track single fluorescent bunyaviral particles in fixed and live cells. This technological breakthrough has enabled imaging of the early stages of infection and the quantification of every step in the bunyavirus cell entry process. Here, we describe the latest procedures for rendering bunyaviral particles fluorescent and discuss the advantages and disadvantages of each approach in light of the most recent advances in fluorescence detection and monitoring of bunyavirus entry. In this mini-review, we also illustrate how fluorescent viral particles are a powerful tool for deciphering the cellular entry process of bunyaviruses, the vast majority of which have not yet been analyzed.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15165","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bunyavirales constitute the largest order of enveloped RNA viruses, many members of which cause severe diseases in humans and domestic animals. In recent decades, innovative fluorescence-based methods have paved the way to visualize and track single fluorescent bunyaviral particles in fixed and live cells. This technological breakthrough has enabled imaging of the early stages of infection and the quantification of every step in the bunyavirus cell entry process. Here, we describe the latest procedures for rendering bunyaviral particles fluorescent and discuss the advantages and disadvantages of each approach in light of the most recent advances in fluorescence detection and monitoring of bunyavirus entry. In this mini-review, we also illustrate how fluorescent viral particles are a powerful tool for deciphering the cellular entry process of bunyaviruses, the vast majority of which have not yet been analyzed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用荧光照亮布尼亚病毒进入宿主细胞的过程。
布尼亚病毒科(Bunyavirales)是最大的包膜 RNA 病毒科,其中许多成员可导致人类和家畜的严重疾病。近几十年来,基于荧光的创新方法为在固定细胞和活细胞中观察和追踪单个荧光布尼亚病毒颗粒铺平了道路。这一技术突破使得布尼亚病毒感染早期阶段的成像以及布尼亚病毒进入细胞过程中每一步的量化成为可能。在此,我们介绍了使布尼亚病毒颗粒发出荧光的最新程序,并根据荧光检测和监测布尼亚病毒进入细胞的最新进展讨论了每种方法的优缺点。在这篇小型综述中,我们还说明了荧光病毒颗粒是如何成为破译布尼亚病毒进入细胞过程的有力工具的,而绝大多数布尼亚病毒进入细胞的过程尚未得到分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
期刊最新文献
The Enteric Bacterium Enterococcus faecalis Elongates and Incorporates Exogenous Short and Medium Chain Fatty Acids Into Membrane Lipids Proteolytic activity of surface-exposed HtrA determines its expression level and is needed to survive acidic conditions in Clostridioides difficile. The dual role of a novel Sinorhizobium meliloti chemotaxis protein CheT in signal termination and adaptation. Flagellar protein FliL: A many-splendored thing. Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1