首页 > 最新文献

Molecular Microbiology最新文献

英文 中文
A Soluble Expression Construct of the Isolated Catalytic Domain of Plasmodium falciparum ATP4 Exhibits ATPase Activity Independent of a γ-Phosphate Receiving Aspartate
IF 3.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-17 DOI: 10.1111/mmi.15358
Timo Beyer, Jesko Caliebe, Lara Kähler, Eric Beitz
The sodium/proton-exchanging ATPase of Plasmodium falciparum malaria parasites, PfATP4, is an emerging drug target. Inhibition results in detrimental cell swelling due to cytosolic accumulation of sodium and alkalization. PfATP4 is a sodium-releasing type II P-type ATPase restricted to apicomplexan parasites. Experimental data on structure–function relationships of the isolated protein are absent. Here, we produced and purified the soluble catalytic domain of PfATP4 and evaluated kinetic properties by in vitro phosphate colorimetry. The protein exhibited Mg2+-dependent ATPase activity at the same order of magnitude as the native cellular PfATP4 and was insensitive to the presence of sodium. AlphaFold 3-based structure and ATP/Mg2+ interaction predictions identified key residues of the nucleotide binding domain (Lys619, Lys652, Arg703). Replacement of the lysines by methionine decreased the enzymatic activity to one quarter. Individual mutation of the putative Mg2+-coordinating Asp865 of the phosphorylation domain was tolerated, while a joint replacement with Asp869 decreased ATPase again to one quarter. Mutation of the putative γ-phosphate receiving Asp451 maintained the rate of Pi release. Our data attribute typical functional roles for P-type ATPases to the basic and acidic residues of the soluble PfATP4 catalytic domain and show that its ATP hydrolysis is independent of phosphorylation of Asp451.
{"title":"A Soluble Expression Construct of the Isolated Catalytic Domain of Plasmodium falciparum ATP4 Exhibits ATPase Activity Independent of a γ-Phosphate Receiving Aspartate","authors":"Timo Beyer, Jesko Caliebe, Lara Kähler, Eric Beitz","doi":"10.1111/mmi.15358","DOIUrl":"https://doi.org/10.1111/mmi.15358","url":null,"abstract":"The sodium/proton-exchanging ATPase of <i>Plasmodium falciparum</i> malaria parasites, PfATP4, is an emerging drug target. Inhibition results in detrimental cell swelling due to cytosolic accumulation of sodium and alkalization. PfATP4 is a sodium-releasing type II P-type ATPase restricted to apicomplexan parasites. Experimental data on structure–function relationships of the isolated protein are absent. Here, we produced and purified the soluble catalytic domain of PfATP4 and evaluated kinetic properties by in vitro phosphate colorimetry. The protein exhibited Mg<sup>2+</sup>-dependent ATPase activity at the same order of magnitude as the native cellular PfATP4 and was insensitive to the presence of sodium. AlphaFold 3-based structure and ATP/Mg<sup>2+</sup> interaction predictions identified key residues of the nucleotide binding domain (Lys619, Lys652, Arg703). Replacement of the lysines by methionine decreased the enzymatic activity to one quarter. Individual mutation of the putative Mg<sup>2+</sup>-coordinating Asp865 of the phosphorylation domain was tolerated, while a joint replacement with Asp869 decreased ATPase again to one quarter. Mutation of the putative γ-phosphate receiving Asp451 maintained the rate of P<sub>i</sub> release. Our data attribute typical functional roles for P-type ATPases to the basic and acidic residues of the soluble PfATP4 catalytic domain and show that its ATP hydrolysis is independent of phosphorylation of Asp451.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Barrier Properties of Biological Membranes Dictate How Cells Experience Oxidative Stress
IF 3.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-17 DOI: 10.1111/mmi.15353
James A. Imlay
Molecular oxygen, superoxide, and hydrogen peroxide are related oxidants that can each impair the growth of microorganisms. Strikingly, these species exhibit large differences in their abilities to cross biological membranes. This Perspective explains the basis of those differences, and it describes natural situations in which the permeability of membranes to oxidants determines the amount of stress that a bacterium experiences.
{"title":"The Barrier Properties of Biological Membranes Dictate How Cells Experience Oxidative Stress","authors":"James A. Imlay","doi":"10.1111/mmi.15353","DOIUrl":"https://doi.org/10.1111/mmi.15353","url":null,"abstract":"Molecular oxygen, superoxide, and hydrogen peroxide are related oxidants that can each impair the growth of microorganisms. Strikingly, these species exhibit large differences in their abilities to cross biological membranes. This Perspective explains the basis of those differences, and it describes natural situations in which the permeability of membranes to oxidants determines the amount of stress that a bacterium experiences.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional and Pangenomic Exploration of Roc Two-Component Regulatory Systems Identifies Novel Players Across Pseudomonas Species
IF 3.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-14 DOI: 10.1111/mmi.15357
Victor Simon, Julian Trouillon, Ina Attrée, Sylvie Elsen
The opportunistic pathogen Pseudomonas aeruginosa relies on a large collection of two-component regulatory systems (TCSs) to sense and adapt to changing environments. Among them, the Roc (regulation of cup) system is a one-of-a-kind network of branched TCSs, composed of two histidine kinases (HKs—RocS1 and RocS2) interacting with three response regulators (RRs—RocA1, RocR, and RocA2), which regulate virulence, antibiotic resistance, and biofilm formation. Based on extensive work on the Roc system, previous data suggested the existence of other key regulators yet to be discovered. In this work, we identified PA4080, renamed RocA3, as a fourth RR that is activated by RocS1 and RocS2 and that positively controls the expression of the cupB operon. Comparative genomic analysis of the locus identified a gene—rocR3—adjacent to rocA3 in a subpopulation of strains that encodes a protein with structural and functional similarity to the c-di-GMP phosphodiesterase RocR. Furthermore, we identified a fourth branch of the Roc system consisting of the PA2583 HK, renamed RocS4, and the Hpt protein HptA. Using a bacterial two-hybrid system, we showed that RocS4 interacts with HptA, which in turn interacts with RocA1, RocA2, and RocR3. Finally, we mapped the pangenomic RRs repertoire, establishing a comprehensive view of the plasticity of such regulators among clades of the species. Overall, our work provides a comprehensive inter-species definition of the Roc system, nearly doubling the number of proteins known to be involved in this interconnected network of TCSs controlling pathogenicity in Pseudomonas species.
{"title":"Functional and Pangenomic Exploration of Roc Two-Component Regulatory Systems Identifies Novel Players Across Pseudomonas Species","authors":"Victor Simon, Julian Trouillon, Ina Attrée, Sylvie Elsen","doi":"10.1111/mmi.15357","DOIUrl":"https://doi.org/10.1111/mmi.15357","url":null,"abstract":"The opportunistic pathogen <i>Pseudomonas aeruginosa</i> relies on a large collection of two-component regulatory systems (TCSs) to sense and adapt to changing environments. Among them, the Roc (<span style=\"text-decoration:underline\">r</span>egulation <span style=\"text-decoration:underline\">o</span>f <i><span style=\"text-decoration:underline\">c</span>up</i>) system is a one-of-a-kind network of branched TCSs, composed of two histidine kinases (HKs—RocS1 and RocS2) interacting with three response regulators (RRs—RocA1, RocR, and RocA2), which regulate virulence, antibiotic resistance, and biofilm formation. Based on extensive work on the Roc system, previous data suggested the existence of other key regulators yet to be discovered. In this work, we identified PA4080, renamed RocA3, as a fourth RR that is activated by RocS1 and RocS2 and that positively controls the expression of the <i>cupB</i> operon. Comparative genomic analysis of the locus identified a gene—<i>rocR3</i>—adjacent to <i>rocA3</i> in a subpopulation of strains that encodes a protein with structural and functional similarity to the c-di-GMP phosphodiesterase RocR. Furthermore, we identified a fourth branch of the Roc system consisting of the PA2583 HK, renamed RocS4, and the Hpt protein HptA. Using a bacterial two-hybrid system, we showed that RocS4 interacts with HptA, which in turn interacts with RocA1, RocA2, and RocR3. Finally, we mapped the pangenomic RRs repertoire, establishing a comprehensive view of the plasticity of such regulators among clades of the species. Overall, our work provides a comprehensive inter-species definition of the Roc system, nearly doubling the number of proteins known to be involved in this interconnected network of TCSs controlling pathogenicity in <i>Pseudomonas</i> species.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"55 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143627472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MecA: A Multifunctional ClpP-Dependent and Independent Regulator in Gram-Positive Bacteria
IF 3.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-11 DOI: 10.1111/mmi.15356
Zezhang T. Wen, Kassapa Ellepola, Hui Wu
MecA is a broadly conserved adaptor protein in Gram-positive bacteria, mediating the recognition and degradation of specific target proteins by ClpCP protease complexes. MecA binds target proteins, often through recognition of degradation tags or motifs, and delivers them to the ClpC ATPase, which unfolds and translocates the substrates into the ClpP protease barrel for degradation. MecA activity is tightly regulated through interactions with ClpC ATPase and other factors, ensuring precise control over protein degradation and cellular homeostasis. Beyond proteolysis, emerging evidence highlights a ClpP-independent role of MecA in modulating the function of its targets, including key enzymes and transcriptional factors involved in biosynthetic and metabolic pathways. However, the full scope and mechanisms of ClpP-independent MecA regulation remain unclear, warranting further investigation.
{"title":"MecA: A Multifunctional ClpP-Dependent and Independent Regulator in Gram-Positive Bacteria","authors":"Zezhang T. Wen, Kassapa Ellepola, Hui Wu","doi":"10.1111/mmi.15356","DOIUrl":"https://doi.org/10.1111/mmi.15356","url":null,"abstract":"MecA is a broadly conserved adaptor protein in Gram-positive bacteria, mediating the recognition and degradation of specific target proteins by ClpCP protease complexes. MecA binds target proteins, often through recognition of degradation tags or motifs, and delivers them to the ClpC ATPase, which unfolds and translocates the substrates into the ClpP protease barrel for degradation. MecA activity is tightly regulated through interactions with ClpC ATPase and other factors, ensuring precise control over protein degradation and cellular homeostasis. Beyond proteolysis, emerging evidence highlights a ClpP-independent role of MecA in modulating the function of its targets, including key enzymes and transcriptional factors involved in biosynthetic and metabolic pathways. However, the full scope and mechanisms of ClpP-independent MecA regulation remain unclear, warranting further investigation.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin and gene regulation in archaea. 古细菌中的染色质和基因调控。
IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-08-03 DOI: 10.1111/mmi.15302
Fabian Blombach, Finn Werner

The chromatinisation of DNA by nucleoid-associated proteins (NAPs) in archaea 'formats' the genome structure in profound ways, revealing both striking differences and analogies to eukaryotic chromatin. However, the extent to which archaeal NAPs actively regulate gene expression remains poorly understood. The dawn of quantitative chromatin mapping techniques and first NAP-specific occupancy profiles in different archaea promise a more accurate view. A picture emerges where in diverse archaea with very different NAP repertoires chromatin maintains access to regulatory motifs including the gene promoter independently of transcription activity. Our re-analysis of genome-wide occupancy data of the crenarchaeal NAP Cren7 shows that these chromatin-free regions are flanked by increased Cren7 binding across the transcription start site. While bacterial NAPs often form heterochromatin-like regions across islands with xenogeneic genes that are transcriptionally silenced, there is little evidence for similar structures in archaea and data from Haloferax show that the promoters of xenogeneic genes remain accessible. Local changes in chromatinisation causing wide-ranging effects on transcription restricted to one chromosomal interaction domain (CID) in Saccharolobus islandicus hint at a higher-order level of organisation between chromatin and transcription. The emerging challenge is to integrate results obtained at microscale and macroscale, reconciling molecular structure and function with dynamic genome-wide chromatin landscapes.

在古细菌中,核团相关蛋白(NAPs)对 DNA 的染色质化以深刻的方式 "格式化 "了基因组结构,揭示了与真核染色质的显著差异和相似之处。然而,人们对古生物 NAPs 在多大程度上积极调控基因表达仍然知之甚少。定量染色质图谱技术的出现以及不同古生菌中首次出现的 NAP 特异性占位图谱,为我们提供了一个更准确的视角。在不同的古细菌中,染色质能独立于转录活性而保持对包括基因启动子在内的调控基团的访问。我们对古细菌 NAP Cren7 的全基因组占据数据的重新分析表明,在这些无染色质区域的两侧,Cren7 与转录起始位点的结合增加。细菌的 NAP 常常与转录沉默的异源基因形成跨岛的异染色质样区域,但几乎没有证据表明古细菌中存在类似的结构,来自 Haloferax 的数据显示,异源基因的启动子仍然可以访问。岛酵母的染色质局部变化对仅限于一个染色体相互作用域(CID)的转录产生了广泛的影响,这表明染色质和转录之间存在更高阶的组织结构。新出现的挑战是整合微观和宏观尺度的研究结果,协调分子结构和功能与全基因组染色质动态景观。
{"title":"Chromatin and gene regulation in archaea.","authors":"Fabian Blombach, Finn Werner","doi":"10.1111/mmi.15302","DOIUrl":"10.1111/mmi.15302","url":null,"abstract":"<p><p>The chromatinisation of DNA by nucleoid-associated proteins (NAPs) in archaea 'formats' the genome structure in profound ways, revealing both striking differences and analogies to eukaryotic chromatin. However, the extent to which archaeal NAPs actively regulate gene expression remains poorly understood. The dawn of quantitative chromatin mapping techniques and first NAP-specific occupancy profiles in different archaea promise a more accurate view. A picture emerges where in diverse archaea with very different NAP repertoires chromatin maintains access to regulatory motifs including the gene promoter independently of transcription activity. Our re-analysis of genome-wide occupancy data of the crenarchaeal NAP Cren7 shows that these chromatin-free regions are flanked by increased Cren7 binding across the transcription start site. While bacterial NAPs often form heterochromatin-like regions across islands with xenogeneic genes that are transcriptionally silenced, there is little evidence for similar structures in archaea and data from Haloferax show that the promoters of xenogeneic genes remain accessible. Local changes in chromatinisation causing wide-ranging effects on transcription restricted to one chromosomal interaction domain (CID) in Saccharolobus islandicus hint at a higher-order level of organisation between chromatin and transcription. The emerging challenge is to integrate results obtained at microscale and macroscale, reconciling molecular structure and function with dynamic genome-wide chromatin landscapes.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"218-231"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphosphate: The "Dark Matter" of Bacterial Chromatin Structure.
IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI: 10.1111/mmi.15350
Lisa R Racki, Lydia Freddolino

Polyphosphate (polyP), broadly defined, consists of a chain of orthophosphate units connected by phosphoanhydride bonds. PolyP is the only universal inorganic biopolymer known to date and is present in all three domains of life. At a first approximation polyP appears to be a simple, featureless, and flexible polyanion. A growing body of evidence suggests that polyP is not as featureless as originally thought: it can form a wide variety of complexes and condensates through association with proteins, nucleic acids, and inorganic ions. It is becoming apparent that the emergent properties of the condensate superstructures it forms are both complex and dynamic. Importantly, growing evidence suggests that polyP can affect bacterial chromatin, both directly and by mediating interactions between DNA and proteins. In an increasing number of contexts, it is becoming apparent that polyP profoundly impacts both chromosomal structure and gene regulation in bacteria, thus serving as a rarely considered, but highly important, component in bacterial nucleoid biology.

{"title":"Polyphosphate: The \"Dark Matter\" of Bacterial Chromatin Structure.","authors":"Lisa R Racki, Lydia Freddolino","doi":"10.1111/mmi.15350","DOIUrl":"10.1111/mmi.15350","url":null,"abstract":"<p><p>Polyphosphate (polyP), broadly defined, consists of a chain of orthophosphate units connected by phosphoanhydride bonds. PolyP is the only universal inorganic biopolymer known to date and is present in all three domains of life. At a first approximation polyP appears to be a simple, featureless, and flexible polyanion. A growing body of evidence suggests that polyP is not as featureless as originally thought: it can form a wide variety of complexes and condensates through association with proteins, nucleic acids, and inorganic ions. It is becoming apparent that the emergent properties of the condensate superstructures it forms are both complex and dynamic. Importantly, growing evidence suggests that polyP can affect bacterial chromatin, both directly and by mediating interactions between DNA and proteins. In an increasing number of contexts, it is becoming apparent that polyP profoundly impacts both chromosomal structure and gene regulation in bacteria, thus serving as a rarely considered, but highly important, component in bacterial nucleoid biology.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"279-293"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA. 细菌在环形超卷曲 DNA 和线性 DNA 上的活体分区凝聚体组装。
IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-08-07 DOI: 10.1111/mmi.15297
Hicham Sekkouri Alaoui, Valentin Quèbre, Linda Delimi, Jérôme Rech, Roxanne Debaugny-Diaz, Delphine Labourdette, Manuel Campos, François Cornet, Jean-Charles Walter, Jean-Yves Bouet

In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.

在细菌中,染色体和质粒的忠实 DNA 分离主要由 ParABS 系统介导。这些系统由 ParA ATPase、DNA 结合 ParB CTPase 和中心粒位点 parS 组成,负责协调新复制 DNA 副本的分离及其在细胞内的定位。准确的分离依赖于高分子量复合物的组装,该复合物由数百个从 parS 位点成核的 ParB 二聚体组成。这种复合体的组装需要多个步骤,并具有动态液滴特性。尽管提出了各种模型,但分区复合物组装的完整机制仍然难以捉摸。本研究利用质粒 F 的 ParABS 系统研究了 DNA 超卷曲对体内 ParB DNA 结合曲线的影响。我们发现,DNA 超卷曲的变化不会对分区复合物组装的任何步骤产生显著影响。此外,利用线性质粒 F 的 ChIP-seq 数据进行的物理建模表明,ParB 的滑动限制在距离 parS 约 2 Kbp 的范围内,这突出表明除了 ParB 在 DNA 上滑动之外,还需要其他机制将 ParB 集中到 parS 处的凝聚体中。最后,对包裹有结合 ParB 的聚合物进行的显式模拟表明,ParB-ParB 相互作用在 ParB 凝聚体内部的 DNA 压实过程中起着主导作用。
{"title":"In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA.","authors":"Hicham Sekkouri Alaoui, Valentin Quèbre, Linda Delimi, Jérôme Rech, Roxanne Debaugny-Diaz, Delphine Labourdette, Manuel Campos, François Cornet, Jean-Charles Walter, Jean-Yves Bouet","doi":"10.1111/mmi.15297","DOIUrl":"10.1111/mmi.15297","url":null,"abstract":"<p><p>In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"232-244"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification, characterization and classification of prokaryotic nucleoid-associated proteins. 原核相关蛋白的鉴定、特征描述和分类。
IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-07-22 DOI: 10.1111/mmi.15298
Samuel Schwab, Remus T Dame

Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.

在整个生命过程中,基因组都需要压缩和组织。这一过程可能涉及的机制包括超卷曲、相分离、电荷中和、大分子拥挤和核糖体相关蛋白(NAPs)。NAPs 的特殊之处在于它们可以在多个长度尺度上组织基因组,因此常被视为基因组的建筑师。NAP 通过弯曲 DNA、包裹 DNA、连接 DNA 或在 DNA 上形成核蛋白丝来塑造基因组。在这篇微型综述中,我们将讨论生命树中具有不同结构特性的独特 NAP 的最新进展,包括细菌、古生菌和病毒中的 NAP。为了帮助表征不断增加的元基因组中的 NAPs,我们推荐了一套廉价而简单的体外生化检测方法,这些检测方法可以明确地揭示 NAPs 的结构特性。最后,我们强调并展示了 AlphaFold 在鉴定新型 NAPs 方面的实用性。
{"title":"Identification, characterization and classification of prokaryotic nucleoid-associated proteins.","authors":"Samuel Schwab, Remus T Dame","doi":"10.1111/mmi.15298","DOIUrl":"10.1111/mmi.15298","url":null,"abstract":"<p><p>Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"206-217"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Human-Specific miR-6762-5p Is an Activator of RhoA GTPase Enhancing Shigella flexneri Intercellular Spreading
IF 3.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1111/mmi.15352
Caroline Reisacher, Estelle Saifi, Elisabeth Ageron, Robert Theodor Mallmann, Norbert Klugbauer, David Skurnik, Laurence Arbibe
MicroRNAs have recently emerged as major players in host –bacterial pathogen interactions, either as part of the host defense mechanism to neutralize infection or as a bacterial arsenal aimed at subverting host cell functions. Here, we identify the newly evolved human microRNA miR-6762-5p as a new player in the host–Shigella interplay. A microarray analysis in infected epithelial cells allowed the detection of this miRNA exclusively during the late phase of infection. Conditional expression of miR-6762-5p combined with a transcriptome analysis indicated a role in cytoskeleton remodeling. Likewise, miR-6762-5p enhanced stress fiber formation through RhoA activation, and in silico analysis identified several regulators of RhoA activity as potential direct transcriptional targets. We further showed that miR-6762-5p expression induces an increase in Shigella intercellular spreading, while miR-6762-5p inhibition reduced bacterial dissemination. We propose a model in which the expression of miR-6762-5p induces cytoskeleton modifications through RhoA activation to achieve a successful dissemination of Shigella in the host.
{"title":"The Human-Specific miR-6762-5p Is an Activator of RhoA GTPase Enhancing Shigella flexneri Intercellular Spreading","authors":"Caroline Reisacher, Estelle Saifi, Elisabeth Ageron, Robert Theodor Mallmann, Norbert Klugbauer, David Skurnik, Laurence Arbibe","doi":"10.1111/mmi.15352","DOIUrl":"https://doi.org/10.1111/mmi.15352","url":null,"abstract":"MicroRNAs have recently emerged as major players in host –bacterial pathogen interactions, either as part of the host defense mechanism to neutralize infection or as a bacterial arsenal aimed at subverting host cell functions. Here, we identify the newly evolved human microRNA miR-6762-5p as a new player in the host–<i>Shigella</i> interplay. A microarray analysis in infected epithelial cells allowed the detection of this miRNA exclusively during the late phase of infection. Conditional expression of miR-6762-5p combined with a transcriptome analysis indicated a role in cytoskeleton remodeling. Likewise, miR-6762-5p enhanced stress fiber formation through RhoA activation, and <i>in silico</i> analysis identified several regulators of RhoA activity as potential direct transcriptional targets. We further showed that miR-6762-5p expression induces an increase in <i>Shigella</i> intercellular spreading, while miR-6762-5p inhibition reduced bacterial dissemination. We propose a model in which the expression of miR-6762-5p induces cytoskeleton modifications through RhoA activation to achieve a successful dissemination of <i>Shigella</i> in the host.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"51 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Bacterial Chromatin Proteins, Transcription, and DNA Topology: Inseparable Partners in the Control of Gene Expression”
IF 3.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1111/mmi.15324
{"title":"Correction to “Bacterial Chromatin Proteins, Transcription, and DNA Topology: Inseparable Partners in the Control of Gene Expression”","authors":"","doi":"10.1111/mmi.15324","DOIUrl":"https://doi.org/10.1111/mmi.15324","url":null,"abstract":"","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"15 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1