Timon Elmer, Marijtje A J van Duijn, Nilam Ram, Laura F Bringmann
{"title":"Modeling categorical time-to-event data: The example of social interaction dynamics captured with event-contingent experience sampling methods.","authors":"Timon Elmer, Marijtje A J van Duijn, Nilam Ram, Laura F Bringmann","doi":"10.1037/met0000598","DOIUrl":null,"url":null,"abstract":"<p><p>The depth of information collected in participants' daily lives with active (e.g., experience sampling surveys) and passive (e.g., smartphone sensors) ambulatory measurement methods is immense. When measuring participants' behaviors in daily life, the timing of particular events-such as social interactions-is often recorded. These data facilitate the investigation of new types of research questions about the timing of those events, including whether individuals' affective state is associated with the rate of social interactions (binary event occurrence) and what types of social interactions are likely to occur (multicategory event occurrences, e.g., interactions with friends or family). Although survival analysis methods have been used to analyze time-to-event data in longitudinal settings for several decades, these methods have not yet been incorporated into ambulatory assessment research. This article illustrates how multilevel and multistate survival analysis methods can be used to model the social interaction dynamics captured in intensive longitudinal data, specifically <i>when individuals exhibit particular categories of behavior</i>. We provide an introduction to these models and a tutorial on how the timing and type of social interactions can be modeled using the R statistical programming language. Using event-contingent reports (<i>N</i> = 150, <i>N</i><sub>events</sub> = 64,112) obtained in an ambulatory study of interpersonal interactions, we further exemplify an empirical application case. In sum, this article demonstrates how survival models can advance the understanding of (social interaction) dynamics that unfold in daily life. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000598","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The depth of information collected in participants' daily lives with active (e.g., experience sampling surveys) and passive (e.g., smartphone sensors) ambulatory measurement methods is immense. When measuring participants' behaviors in daily life, the timing of particular events-such as social interactions-is often recorded. These data facilitate the investigation of new types of research questions about the timing of those events, including whether individuals' affective state is associated with the rate of social interactions (binary event occurrence) and what types of social interactions are likely to occur (multicategory event occurrences, e.g., interactions with friends or family). Although survival analysis methods have been used to analyze time-to-event data in longitudinal settings for several decades, these methods have not yet been incorporated into ambulatory assessment research. This article illustrates how multilevel and multistate survival analysis methods can be used to model the social interaction dynamics captured in intensive longitudinal data, specifically when individuals exhibit particular categories of behavior. We provide an introduction to these models and a tutorial on how the timing and type of social interactions can be modeled using the R statistical programming language. Using event-contingent reports (N = 150, Nevents = 64,112) obtained in an ambulatory study of interpersonal interactions, we further exemplify an empirical application case. In sum, this article demonstrates how survival models can advance the understanding of (social interaction) dynamics that unfold in daily life. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.