{"title":"Spatiotemporal protein dynamics during early organogenesis in mouse conceptuses treated with valproic acid","authors":"Samantha Lapehn, Justin A. Colacino, Craig Harris","doi":"10.1016/j.ntt.2023.107286","DOIUrl":null,"url":null,"abstract":"<div><p><span>Valproic acid (VPA) is an anti-epileptic medication that increases the risk of </span>neural tube<span><span><span> defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 μM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and </span>mass spectrometry<span><span><span>. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and </span>embryonic development including convergent extension, Wnt Signaling/planar </span>cell polarity, cellular migration, </span></span>cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.</span></p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"99 ","pages":"Article 107286"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036223001368","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Valproic acid (VPA) is an anti-epileptic medication that increases the risk of neural tube defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 μM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and mass spectrometry. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and embryonic development including convergent extension, Wnt Signaling/planar cell polarity, cellular migration, cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.