Non-viral approaches for gene therapy and therapeutic genome editing across the blood-brain barrier.

Med-X Pub Date : 2023-01-01 Epub Date: 2023-07-11 DOI:10.1007/s44258-023-00004-0
Ruosen Xie, Yuyuan Wang, Jacobus C Burger, Dongdong Li, Min Zhu, Shaoqin Gong
{"title":"Non-viral approaches for gene therapy and therapeutic genome editing across the blood-brain barrier.","authors":"Ruosen Xie, Yuyuan Wang, Jacobus C Burger, Dongdong Li, Min Zhu, Shaoqin Gong","doi":"10.1007/s44258-023-00004-0","DOIUrl":null,"url":null,"abstract":"<p><p>The success of brain-targeted gene therapy and therapeutic genome editing hinges on the efficient delivery of biologics bypassing the blood-brain barrier (BBB), which presents a significant challenge in the development of treatments for central nervous system disorders. This is particularly the case for nucleic acids and genome editors that are naturally excluded by the BBB and have poor chemical stability in the bloodstream and poor cellular uptake capability, thereby requiring judiciously designed nanovectors administered systemically for intracellular delivery to brain cells such as neurons. To overcome this obstacle, various strategies for bypassing the BBB have been developed in recent years to deliver biologics to the brain via intravenous administration using non-viral vectors. This review summarizes various brain targeting strategies and recent representative reports on brain-targeted non-viral delivery systems that allow gene therapy and therapeutic genome editing via intravenous administration, and highlights ongoing challenges and future perspectives for systemic delivery of biologics to the brain via non-viral vectors.</p>","PeriodicalId":74169,"journal":{"name":"Med-X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med-X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44258-023-00004-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The success of brain-targeted gene therapy and therapeutic genome editing hinges on the efficient delivery of biologics bypassing the blood-brain barrier (BBB), which presents a significant challenge in the development of treatments for central nervous system disorders. This is particularly the case for nucleic acids and genome editors that are naturally excluded by the BBB and have poor chemical stability in the bloodstream and poor cellular uptake capability, thereby requiring judiciously designed nanovectors administered systemically for intracellular delivery to brain cells such as neurons. To overcome this obstacle, various strategies for bypassing the BBB have been developed in recent years to deliver biologics to the brain via intravenous administration using non-viral vectors. This review summarizes various brain targeting strategies and recent representative reports on brain-targeted non-viral delivery systems that allow gene therapy and therapeutic genome editing via intravenous administration, and highlights ongoing challenges and future perspectives for systemic delivery of biologics to the brain via non-viral vectors.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨血脑屏障的基因治疗和治疗性基因组编辑的非病毒方法。
脑靶向基因治疗和治疗性基因组编辑的成功取决于生物制剂绕过血脑屏障(BBB)的有效递送,这对开发中枢神经系统疾病的治疗方法提出了重大挑战。对于被血脑屏障自然排除在外的核酸和基因组编辑器来说尤其如此,它们在血液中的化学稳定性差,细胞摄取能力差,因此需要明智设计的纳米载体系统给药,用于细胞内递送到脑细胞(如神经元)。为了克服这一障碍,近年来开发了各种绕过血脑屏障的策略,使用非病毒载体通过静脉给药将生物制品输送到大脑。这篇综述总结了各种脑靶向策略和最近关于脑靶向非病毒递送系统的代表性报告,这些系统允许通过静脉给药进行基因治疗和治疗基因组编辑,并强调了通过非病毒载体将生物制品系统递送到脑中的持续挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategic reuse of rapid antigen tests for coagulation status assessment: an integrated machine learning approach Atomic force microscopy in the characterization and clinical evaluation of neurological disorders: current and emerging technologies Biomaterials-enabled electrical stimulation for tissue healing and regeneration Advancement in modulation of brain extracellular space and unlocking its potential for intervention of neurological diseases Shear wave ultrasound elastography for estimating cartilage stiffness: implications for early detection of osteoarthritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1