Neuroprotective Potential of Tannic Acid Against Neurotoxic Outputs of Monosodium Glutamate in Rat Cerebral Cortex.

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-12-01 Epub Date: 2023-09-15 DOI:10.1007/s12640-023-00667-y
Medine Sibel Karagac, Hamid Ceylan
{"title":"Neuroprotective Potential of Tannic Acid Against Neurotoxic Outputs of Monosodium Glutamate in Rat Cerebral Cortex.","authors":"Medine Sibel Karagac, Hamid Ceylan","doi":"10.1007/s12640-023-00667-y","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate in monosodium glutamate (MSG), which is widely used in the food industry, has an important role in major brain functions such as memory, learning, synapse formation, and stabilization. However, extensive use of MSG has been linked with neurotoxicity. Therefore, in addition to clarifying the underlying mechanisms of MSG-induced neurotoxicity, it is also important to determine safe agents that can diminish the damage caused by MSG. Tannic acid (TA) is a naturally occurring plant polyphenol that exhibits versatile physiological effects such as anti-inflammatory, anti-carcinogenic, antioxidant, and radical scavenging. This study was conducted to assess the neurotoxic and neuroprotective effects of these two dietary components in the rat cerebral cortex. Twenty-four Sprague Dawley rats were divided into 4 equal groups and were treated with MSG (2 g/kg) and TA (50 mg/kg) alone and in combination for 3 weeks. Alterations in oxidative stress indicators (MDA and GSH) were measured in the cortex tissues. In addition, changes in enzymatic activities and gene expression patterns of antioxidant system components (GST, GPx, CAT, and SOD) were investigated. Furthermore, mRNA expressions of FoxO transcription factors (Foxo1 and Foxo3) and apoptotic markers (Casp3 and Casp9) were assessed. Results revealed that dietary TA intake significantly rehabilitated MSG-induced dysregulation in cortical tissue by regulating redox balance, cellular homeostasis, and apoptosis. The present study proposes that MSG-induced detrimental effects on cortical tissue are potentially mitigated by TA via modulation of oxidative stress, cell metabolism, and programmed cell death.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":" ","pages":"670-680"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00667-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamate in monosodium glutamate (MSG), which is widely used in the food industry, has an important role in major brain functions such as memory, learning, synapse formation, and stabilization. However, extensive use of MSG has been linked with neurotoxicity. Therefore, in addition to clarifying the underlying mechanisms of MSG-induced neurotoxicity, it is also important to determine safe agents that can diminish the damage caused by MSG. Tannic acid (TA) is a naturally occurring plant polyphenol that exhibits versatile physiological effects such as anti-inflammatory, anti-carcinogenic, antioxidant, and radical scavenging. This study was conducted to assess the neurotoxic and neuroprotective effects of these two dietary components in the rat cerebral cortex. Twenty-four Sprague Dawley rats were divided into 4 equal groups and were treated with MSG (2 g/kg) and TA (50 mg/kg) alone and in combination for 3 weeks. Alterations in oxidative stress indicators (MDA and GSH) were measured in the cortex tissues. In addition, changes in enzymatic activities and gene expression patterns of antioxidant system components (GST, GPx, CAT, and SOD) were investigated. Furthermore, mRNA expressions of FoxO transcription factors (Foxo1 and Foxo3) and apoptotic markers (Casp3 and Casp9) were assessed. Results revealed that dietary TA intake significantly rehabilitated MSG-induced dysregulation in cortical tissue by regulating redox balance, cellular homeostasis, and apoptosis. The present study proposes that MSG-induced detrimental effects on cortical tissue are potentially mitigated by TA via modulation of oxidative stress, cell metabolism, and programmed cell death.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单宁酸对大鼠大脑皮层谷氨酸钠神经毒性输出的神经保护作用。
谷氨酸钠(MSG)中的谷氨酸广泛应用于食品工业,在记忆、学习、突触形成和稳定等主要脑功能中起着重要作用。然而,大量使用味精与神经毒性有关。因此,除了阐明味精诱导神经毒性的潜在机制外,确定可以减少味精造成的损害的安全药物也很重要。单宁酸(TA)是一种天然存在的植物多酚,具有多种生理作用,如抗炎、抗癌、抗氧化和清除自由基。本研究旨在评估这两种膳食成分对大鼠大脑皮层的神经毒性和神经保护作用。选取24只Sprague Dawley大鼠,随机分为4组,分别给予MSG (2 g/kg)和TA (50 mg/kg)单独或联合治疗3周。测定皮质组织氧化应激指标(MDA和GSH)的变化。此外,研究了抗氧化系统组分(GST、GPx、CAT和SOD)的酶活性和基因表达模式的变化。进一步检测FoxO转录因子(Foxo1和Foxo3)和凋亡标志物(Casp3和Casp9)的mRNA表达。结果显示,膳食摄入TA可通过调节氧化还原平衡、细胞稳态和细胞凋亡,显著恢复msg诱导的皮质组织失调。目前的研究表明,味精对皮质组织的有害影响可能通过TA调节氧化应激、细胞代谢和程序性细胞死亡来减轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1