Pub Date : 2024-10-18DOI: 10.1007/s12640-024-00722-2
Tiffany F C Kung, Anna C J Kalisvaart, Angely Claire C Suerte, Glen C Jickling, Frank K H van Landeghem, Frederick Colbourne
Intracerebral hemorrhage (ICH) is a stroke subtype with a high mortality rate (~ 40%). After ICH, the mass effect of the hematoma and edema contribute to raised intracranial pressure (ICP) and poor outcome. Endogenous compensatory mechanisms that blunt ICP elevations include redirection of venous blood and cerebrospinal fluid, along with brain tissue compliance (e.g., decreased cell volume, increased cell density); however, these limited reserves can be exhausted after severe stroke, resulting in decompensated ICP that requires careful clinical management. Management strategies can include administration of hypertonic saline (HTS), an osmotic agent that putatively attenuates edema, and thereby ICP elevations. Evidence regarding the efficacy of HTS treatment following ICH remains limited. In this study, adult male rats were given a collagenase-induced striatal ICH and a bolus of either 3% HTS or 0.9% saline vehicle at 2- and 14-hours post-stroke onset. Neurological deficits, edema, ipsilateral cell volume and density (in areas S1 and CA1), and contralateral CA1 ultrastructural morphology were assessed 24 h post-ICH. Animals had large bleeds (median 108.2 µL), extensive edema (median 83.9% brain water content in ipsilateral striatum), and evident behavioural deficits (median 5.4 neurological deficit scale score). However, HTS did not affect edema (p ≥ 0.4797), behaviour (p = 0.6479), cell volume (p ≥ 0.1079), or cell density (p ≥ 0.0983). Qualitative ultrastructural assessment of contralateral area CA1 suggested that HTS administration was associated with paradoxical cellular swelling in ICH animals. Overall, there was no benefit with administering 3% HTS after ICH.
{"title":"No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage.","authors":"Tiffany F C Kung, Anna C J Kalisvaart, Angely Claire C Suerte, Glen C Jickling, Frank K H van Landeghem, Frederick Colbourne","doi":"10.1007/s12640-024-00722-2","DOIUrl":"https://doi.org/10.1007/s12640-024-00722-2","url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is a stroke subtype with a high mortality rate (~ 40%). After ICH, the mass effect of the hematoma and edema contribute to raised intracranial pressure (ICP) and poor outcome. Endogenous compensatory mechanisms that blunt ICP elevations include redirection of venous blood and cerebrospinal fluid, along with brain tissue compliance (e.g., decreased cell volume, increased cell density); however, these limited reserves can be exhausted after severe stroke, resulting in decompensated ICP that requires careful clinical management. Management strategies can include administration of hypertonic saline (HTS), an osmotic agent that putatively attenuates edema, and thereby ICP elevations. Evidence regarding the efficacy of HTS treatment following ICH remains limited. In this study, adult male rats were given a collagenase-induced striatal ICH and a bolus of either 3% HTS or 0.9% saline vehicle at 2- and 14-hours post-stroke onset. Neurological deficits, edema, ipsilateral cell volume and density (in areas S1 and CA1), and contralateral CA1 ultrastructural morphology were assessed 24 h post-ICH. Animals had large bleeds (median 108.2 µL), extensive edema (median 83.9% brain water content in ipsilateral striatum), and evident behavioural deficits (median 5.4 neurological deficit scale score). However, HTS did not affect edema (p ≥ 0.4797), behaviour (p = 0.6479), cell volume (p ≥ 0.1079), or cell density (p ≥ 0.0983). Qualitative ultrastructural assessment of contralateral area CA1 suggested that HTS administration was associated with paradoxical cellular swelling in ICH animals. Overall, there was no benefit with administering 3% HTS after ICH.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 6","pages":"44"},"PeriodicalIF":2.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s12640-024-00721-3
Jan L Cheng, Anthony L Cook, Jana Talbot, Sharn Perry
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
兴奋毒性与环境原因(农药和氰毒素暴露)、兴奋性神经递质失衡或内在神经元过度兴奋有关,是肌萎缩性脊髓侧索硬化症(ALS)神经变性的核心病理机制。利用体外和体内动物模型对兴奋毒性机制进行研究,对了解 ALS 的发病机制至关重要。特别是,诱导多能干细胞(iPSC)技术的进步现在提供了以人类细胞为基础的模型,可随时进行基于环境和网络的兴奋毒性操作。iPSC 具有细胞类型特异性分化的特点,再加上包括编辑疾病相关基因变异、化学遗传学和环境风险相关暴露在内的兴奋毒性建模方法,使 iPSC 成为研究基因与环境相互作用和疾病相关兴奋毒性机制的首选。这其中的关键是了解所研究的 iPSC 衍生神经元培养物表达哪些神经递质受体亚单位,它们的活性如何对这些受体的拮抗剂和激动剂做出反应,以及如何解释从多参数电生理记录中获得的数据。本综述探讨了基于 iPSC 的研究如何促进我们对 ALS 相关兴奋毒性的理解,并重点介绍了在 iPSC 衍生神经元中诱导兴奋毒性的新方法,以进一步加深我们对其病理途径的理解。
{"title":"How is Excitotoxicity Being Modelled in iPSC-Derived Neurons?","authors":"Jan L Cheng, Anthony L Cook, Jana Talbot, Sharn Perry","doi":"10.1007/s12640-024-00721-3","DOIUrl":"10.1007/s12640-024-00721-3","url":null,"abstract":"<p><p>Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"43"},"PeriodicalIF":2.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1007/s12640-024-00720-4
Ana Carolina Issy, João Francisco Pedrazzi, Glauce Crivelaro Nascimento, Lúcia Helena Faccioli, Elaine Del Bel
The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.
5-脂氧合酶/白三烯系统与中枢神经系统的生理和病理状态都有关系。了解该系统如何与多巴胺能系统相互作用,可以为多巴胺相关病症提供有价值的见解。本研究的重点是检测 5-脂氧合酶/白三烯缺陷小鼠的运动和非运动多巴胺相关反应。我们使用安非他明、阿扑吗啡和雷舍平等药理制剂来挑战多巴胺能系统,评估它们对冲动抑制反应(PPI)、一般运动活动和口腔不自主运动的影响。此外,我们还分析了利舍平处理的小鼠纹状体胶质标记物(GFAP和Iba-1)的表达情况。与野生型小鼠相比,5-脂氧合酶/白三烯缺陷小鼠表现出更强的自发运动活动,包括水平和垂直探索,以及刻板行为。急性阿朴吗啡治疗可减少这种过度活动。虽然基础 PPI 反应没有变化,但 5-脂氧合酶/白三烯缺陷小鼠对苯丙胺诱导的 PPI 干扰的敏感性显著降低。相反,这些小鼠更容易受到利血平诱导的不自主运动的影响。5-脂氧合酶/白三烯缺陷小鼠和野生型小鼠纹状体GFAP和Iba-1阳性细胞的基础表达没有明显差异。然而,利舍平治疗会显著增加野生型小鼠的纹状体 GFAP 免疫反应,而在 5-脂氧合酶缺陷型小鼠中却观察不到这种效应。此外,野生型小鼠经利血平处理后,活化小胶质细胞的比例明显升高,而 5-脂氧合酶/白三烯缺陷小鼠则没有这种效应。我们的研究结果表明,5-脂氧合酶/白三烯缺乏会导致一种独特的多巴胺能表型,表明白三烯可能会影响多巴胺介导的反应的调节。
{"title":"Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses.","authors":"Ana Carolina Issy, João Francisco Pedrazzi, Glauce Crivelaro Nascimento, Lúcia Helena Faccioli, Elaine Del Bel","doi":"10.1007/s12640-024-00720-4","DOIUrl":"10.1007/s12640-024-00720-4","url":null,"abstract":"<p><p>The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"42"},"PeriodicalIF":2.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1007/s12640-024-00717-z
Tsung-Ming Shih, Crystal Munoz, Cindy Acon-Chen, Zora-Maya Keith
Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A1 adenosine receptor (A1AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.
{"title":"Pharmacology of Adenosine A<sub>1</sub> Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication.","authors":"Tsung-Ming Shih, Crystal Munoz, Cindy Acon-Chen, Zora-Maya Keith","doi":"10.1007/s12640-024-00717-z","DOIUrl":"10.1007/s12640-024-00717-z","url":null,"abstract":"<p><p>Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A<sub>1</sub> adenosine receptor (A<sub>1</sub>AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"41"},"PeriodicalIF":2.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s12640-024-00719-x
Olusegun L Adebayo, Vivian A Agu, Grace A Idowu, Blessing C Ezejiaku, Adeleke K Atunnise
Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200 mg/kg b.wgt orally in 0.9% saline solution) only for 3 weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na+/K+-, Ca2+-, Mg2+- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.
谷氨酸一钠(味精)是一种无声的兴奋性毒素,被用作增味剂,但却对消费者的健康造成严重危害。味精作为主要的兴奋性神经递质在神经元功能中发挥作用。味精进入血液后,最终会增加大脑谷氨酸含量,主要通过氧化应激造成功能紊乱。这项研究评估了大量摄入味精的毒性效应以及维生素 C 对雄性 Wistar 大鼠纹状体和小脑中 ATP 酶活性的调节作用。研究将大鼠分为四组(A-D):A 组仅喂食大鼠表演;B 组喂食含 15% 味精的食物;C 组仅口服维生素 C(200 毫克/千克体重,溶于 0.9% 生理盐水中)3 周;D 组大鼠喂食味精和维生素 C。味精会增加丙二醛(MDA)水平,并显著降低过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性以及谷胱甘肽(GSH)水平。味精会明显损害纹状体和小脑 ATP 酶(Na+/K+-、Ca2+-、Mg2+- 和总 ATP 酶)的活性。维生素 C 可消除味精诱导的氧化应激并改善 ATP 酶的活性。研究结果表明,维生素 C 有助于改善大鼠纹状体和小脑中膜结合 ATP 酶的功能,从而抵御味精的毒性。
{"title":"The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.","authors":"Olusegun L Adebayo, Vivian A Agu, Grace A Idowu, Blessing C Ezejiaku, Adeleke K Atunnise","doi":"10.1007/s12640-024-00719-x","DOIUrl":"10.1007/s12640-024-00719-x","url":null,"abstract":"<p><p>Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200 mg/kg b.wgt orally in 0.9% saline solution) only for 3 weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na<sup>+</sup>/K<sup>+</sup>-, Ca<sup>2+</sup>-, Mg<sup>2+</sup>- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"40"},"PeriodicalIF":2.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1007/s12640-024-00718-y
Felipe Schmitz, Luz Elena Durán-Carabali, Alessandra Schmitt Rieder, Josiane S Silveira, Osmar Vieira Ramires Junior, Larissa D Bobermin, André Quincozes-Santos, Vinícius S Alves, Robson Coutinho-Silva, Luiz Eduardo B Savio, Daniella M Coelho, Carmen R Vargas, Carlos Alexandre Netto, Angela T S Wyse
There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na+,K+-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.
{"title":"Methylphenidate Exposing During Neurodevelopment Alters Amino Acid Profile, Astrocyte Marker and Glutamatergic Excitotoxicity in the Rat Striatum.","authors":"Felipe Schmitz, Luz Elena Durán-Carabali, Alessandra Schmitt Rieder, Josiane S Silveira, Osmar Vieira Ramires Junior, Larissa D Bobermin, André Quincozes-Santos, Vinícius S Alves, Robson Coutinho-Silva, Luiz Eduardo B Savio, Daniella M Coelho, Carmen R Vargas, Carlos Alexandre Netto, Angela T S Wyse","doi":"10.1007/s12640-024-00718-y","DOIUrl":"10.1007/s12640-024-00718-y","url":null,"abstract":"<p><p>There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na<sup>+</sup>,K<sup>+</sup>-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"39"},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1007/s12640-024-00716-0
Areej Turkistani, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Walaa A Negm, Mostafa M Bahaa, Mostafa E Metawee, Gaber El-Saber Batiha
Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.
{"title":"Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment.","authors":"Areej Turkistani, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Walaa A Negm, Mostafa M Bahaa, Mostafa E Metawee, Gaber El-Saber Batiha","doi":"10.1007/s12640-024-00716-0","DOIUrl":"10.1007/s12640-024-00716-0","url":null,"abstract":"<p><p>Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"38"},"PeriodicalIF":2.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1007/s12640-024-00715-1
Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan
Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.
{"title":"Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone.","authors":"Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan","doi":"10.1007/s12640-024-00715-1","DOIUrl":"10.1007/s12640-024-00715-1","url":null,"abstract":"<p><p>Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"37"},"PeriodicalIF":2.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1007/s12640-024-00714-2
Majid Motaghinejad, Manijeh Motevalian, Mohammad Abdollahi, Mansour Heidari, Zahra Madjd
{"title":"Retraction Note to: Topiramate Confers Neuroprotection Against Methylphenidate-Induced Neurodegeneration in Dentate Gyrus and CA1 Regions of Hippocampus via CREB/BDNF Pathway in Rats.","authors":"Majid Motaghinejad, Manijeh Motevalian, Mohammad Abdollahi, Mansour Heidari, Zahra Madjd","doi":"10.1007/s12640-024-00714-2","DOIUrl":"10.1007/s12640-024-00714-2","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"36"},"PeriodicalIF":2.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1007/s12640-024-00713-3
Noorul Hasan, Saima Zameer, Abul Kalam Najmi, Suhel Parvez, Mohd Akhtar
{"title":"Retraction Note: Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer's Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway.","authors":"Noorul Hasan, Saima Zameer, Abul Kalam Najmi, Suhel Parvez, Mohd Akhtar","doi":"10.1007/s12640-024-00713-3","DOIUrl":"10.1007/s12640-024-00713-3","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"34"},"PeriodicalIF":2.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}