首页 > 最新文献

Neurotoxicity Research最新文献

英文 中文
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. 实验性脑出血后使用 3% 高渗盐水无益。
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-10-18 DOI: 10.1007/s12640-024-00722-2
Tiffany F C Kung, Anna C J Kalisvaart, Angely Claire C Suerte, Glen C Jickling, Frank K H van Landeghem, Frederick Colbourne

Intracerebral hemorrhage (ICH) is a stroke subtype with a high mortality rate (~ 40%). After ICH, the mass effect of the hematoma and edema contribute to raised intracranial pressure (ICP) and poor outcome. Endogenous compensatory mechanisms that blunt ICP elevations include redirection of venous blood and cerebrospinal fluid, along with brain tissue compliance (e.g., decreased cell volume, increased cell density); however, these limited reserves can be exhausted after severe stroke, resulting in decompensated ICP that requires careful clinical management. Management strategies can include administration of hypertonic saline (HTS), an osmotic agent that putatively attenuates edema, and thereby ICP elevations. Evidence regarding the efficacy of HTS treatment following ICH remains limited. In this study, adult male rats were given a collagenase-induced striatal ICH and a bolus of either 3% HTS or 0.9% saline vehicle at 2- and 14-hours post-stroke onset. Neurological deficits, edema, ipsilateral cell volume and density (in areas S1 and CA1), and contralateral CA1 ultrastructural morphology were assessed 24 h post-ICH. Animals had large bleeds (median 108.2 µL), extensive edema (median 83.9% brain water content in ipsilateral striatum), and evident behavioural deficits (median 5.4 neurological deficit scale score). However, HTS did not affect edema (p ≥ 0.4797), behaviour (p = 0.6479), cell volume (p ≥ 0.1079), or cell density (p ≥ 0.0983). Qualitative ultrastructural assessment of contralateral area CA1 suggested that HTS administration was associated with paradoxical cellular swelling in ICH animals. Overall, there was no benefit with administering 3% HTS after ICH.

脑出血(ICH)是一种死亡率很高(约 40%)的中风亚型。ICH 后,血肿和水肿的肿块效应导致颅内压(ICP)升高,预后不良。钝化 ICP 升高的内源性代偿机制包括静脉血和脑脊液的重新定向,以及脑组织的顺应性(如细胞体积减少、细胞密度增加);然而,这些有限的储备在严重卒中后可能会耗尽,导致 ICP 失代偿,需要谨慎的临床管理。处理策略包括使用高渗盐水(HTS),这是一种渗透剂,可减轻水肿,从而缓解 ICP 升高。有关 ICH 后 HTS 治疗效果的证据仍然有限。在这项研究中,成年雄性大鼠接受了胶原酶诱导的纹状体 ICH,并在中风发作后 2 小时和 14 小时分别注射了 3% HTS 或 0.9% 生理盐水。对中风后 24 小时的神经功能缺损、水肿、同侧细胞体积和密度(S1 和 CA1 区域)以及对侧 CA1 超微结构形态进行了评估。动物有大量出血(中位数为 108.2 µL)、广泛水肿(同侧纹状体脑水含量中位数为 83.9%)和明显的行为障碍(神经功能缺损量表评分中位数为 5.4 分)。然而,HTS 不会影响水肿(p ≥ 0.4797)、行为(p = 0.6479)、细胞体积(p ≥ 0.1079)或细胞密度(p ≥ 0.0983)。对侧 CA1 区的定性超微结构评估表明,HTS 给药与 ICH 动物的矛盾细胞肿胀有关。总体而言,在 ICH 后施用 3% HTS 没有任何益处。
{"title":"No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage.","authors":"Tiffany F C Kung, Anna C J Kalisvaart, Angely Claire C Suerte, Glen C Jickling, Frank K H van Landeghem, Frederick Colbourne","doi":"10.1007/s12640-024-00722-2","DOIUrl":"https://doi.org/10.1007/s12640-024-00722-2","url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is a stroke subtype with a high mortality rate (~ 40%). After ICH, the mass effect of the hematoma and edema contribute to raised intracranial pressure (ICP) and poor outcome. Endogenous compensatory mechanisms that blunt ICP elevations include redirection of venous blood and cerebrospinal fluid, along with brain tissue compliance (e.g., decreased cell volume, increased cell density); however, these limited reserves can be exhausted after severe stroke, resulting in decompensated ICP that requires careful clinical management. Management strategies can include administration of hypertonic saline (HTS), an osmotic agent that putatively attenuates edema, and thereby ICP elevations. Evidence regarding the efficacy of HTS treatment following ICH remains limited. In this study, adult male rats were given a collagenase-induced striatal ICH and a bolus of either 3% HTS or 0.9% saline vehicle at 2- and 14-hours post-stroke onset. Neurological deficits, edema, ipsilateral cell volume and density (in areas S1 and CA1), and contralateral CA1 ultrastructural morphology were assessed 24 h post-ICH. Animals had large bleeds (median 108.2 µL), extensive edema (median 83.9% brain water content in ipsilateral striatum), and evident behavioural deficits (median 5.4 neurological deficit scale score). However, HTS did not affect edema (p ≥ 0.4797), behaviour (p = 0.6479), cell volume (p ≥ 0.1079), or cell density (p ≥ 0.0983). Qualitative ultrastructural assessment of contralateral area CA1 suggested that HTS administration was associated with paradoxical cellular swelling in ICH animals. Overall, there was no benefit with administering 3% HTS after ICH.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 6","pages":"44"},"PeriodicalIF":2.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? 如何在 iPSC 衍生神经元中模拟兴奋毒性?
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-10-15 DOI: 10.1007/s12640-024-00721-3
Jan L Cheng, Anthony L Cook, Jana Talbot, Sharn Perry

Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.

兴奋毒性与环境原因(农药和氰毒素暴露)、兴奋性神经递质失衡或内在神经元过度兴奋有关,是肌萎缩性脊髓侧索硬化症(ALS)神经变性的核心病理机制。利用体外和体内动物模型对兴奋毒性机制进行研究,对了解 ALS 的发病机制至关重要。特别是,诱导多能干细胞(iPSC)技术的进步现在提供了以人类细胞为基础的模型,可随时进行基于环境和网络的兴奋毒性操作。iPSC 具有细胞类型特异性分化的特点,再加上包括编辑疾病相关基因变异、化学遗传学和环境风险相关暴露在内的兴奋毒性建模方法,使 iPSC 成为研究基因与环境相互作用和疾病相关兴奋毒性机制的首选。这其中的关键是了解所研究的 iPSC 衍生神经元培养物表达哪些神经递质受体亚单位,它们的活性如何对这些受体的拮抗剂和激动剂做出反应,以及如何解释从多参数电生理记录中获得的数据。本综述探讨了基于 iPSC 的研究如何促进我们对 ALS 相关兴奋毒性的理解,并重点介绍了在 iPSC 衍生神经元中诱导兴奋毒性的新方法,以进一步加深我们对其病理途径的理解。
{"title":"How is Excitotoxicity Being Modelled in iPSC-Derived Neurons?","authors":"Jan L Cheng, Anthony L Cook, Jana Talbot, Sharn Perry","doi":"10.1007/s12640-024-00721-3","DOIUrl":"10.1007/s12640-024-00721-3","url":null,"abstract":"<p><p>Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"43"},"PeriodicalIF":2.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. 5-脂氧合酶缺陷对多巴胺介导的行为反应的影响
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-10-04 DOI: 10.1007/s12640-024-00720-4
Ana Carolina Issy, João Francisco Pedrazzi, Glauce Crivelaro Nascimento, Lúcia Helena Faccioli, Elaine Del Bel

The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.

5-脂氧合酶/白三烯系统与中枢神经系统的生理和病理状态都有关系。了解该系统如何与多巴胺能系统相互作用,可以为多巴胺相关病症提供有价值的见解。本研究的重点是检测 5-脂氧合酶/白三烯缺陷小鼠的运动和非运动多巴胺相关反应。我们使用安非他明、阿扑吗啡和雷舍平等药理制剂来挑战多巴胺能系统,评估它们对冲动抑制反应(PPI)、一般运动活动和口腔不自主运动的影响。此外,我们还分析了利舍平处理的小鼠纹状体胶质标记物(GFAP和Iba-1)的表达情况。与野生型小鼠相比,5-脂氧合酶/白三烯缺陷小鼠表现出更强的自发运动活动,包括水平和垂直探索,以及刻板行为。急性阿朴吗啡治疗可减少这种过度活动。虽然基础 PPI 反应没有变化,但 5-脂氧合酶/白三烯缺陷小鼠对苯丙胺诱导的 PPI 干扰的敏感性显著降低。相反,这些小鼠更容易受到利血平诱导的不自主运动的影响。5-脂氧合酶/白三烯缺陷小鼠和野生型小鼠纹状体GFAP和Iba-1阳性细胞的基础表达没有明显差异。然而,利舍平治疗会显著增加野生型小鼠的纹状体 GFAP 免疫反应,而在 5-脂氧合酶缺陷型小鼠中却观察不到这种效应。此外,野生型小鼠经利血平处理后,活化小胶质细胞的比例明显升高,而 5-脂氧合酶/白三烯缺陷小鼠则没有这种效应。我们的研究结果表明,5-脂氧合酶/白三烯缺乏会导致一种独特的多巴胺能表型,表明白三烯可能会影响多巴胺介导的反应的调节。
{"title":"Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses.","authors":"Ana Carolina Issy, João Francisco Pedrazzi, Glauce Crivelaro Nascimento, Lúcia Helena Faccioli, Elaine Del Bel","doi":"10.1007/s12640-024-00720-4","DOIUrl":"10.1007/s12640-024-00720-4","url":null,"abstract":"<p><p>The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"42"},"PeriodicalIF":2.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. 腺苷 A1 受体激动剂在人源化酯酶小鼠苏曼中毒后癫痫模型中的药理作用。
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-09-04 DOI: 10.1007/s12640-024-00717-z
Tsung-Ming Shih, Crystal Munoz, Cindy Acon-Chen, Zora-Maya Keith

Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A1 adenosine receptor (A1AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.

最近,一种血清羧化酯酶基因被敲除、人类乙酰胆碱酯酶基因被敲入的新型转基因小鼠品系(KIKO)被创造出来,以模拟人类对神经毒剂(NA)暴露的反应及其标准医疗方法。在大鼠和 KIKO 小鼠索曼(GD)癫痫模型中,单用 A1 腺苷受体(A1AR)激动剂 N-双环-(2.2.1)-庚-2-基-5'-氯-5'-脱氧腺苷(ENBA)可有效抗惊厥和保护神经(A/N)。在本研究中,我们利用 KIKO 小鼠进一步评估了 ENBA 作为标准 NA 药物治疗(即硫酸阿托品、氯化普利多辛 [2-PAM] 和咪达唑仑)的辅助药物的基本药理 A/N 作用。雄性小鼠皮层植入脑电图(EEG)电极,用阿索肟(HI-6)进行预处理,并暴露于致痫剂量的GD(33微克/千克,静脉注射)或生理盐水(假暴露)中,然后在癫痫发作开始15分钟后单独或作为标准药物治疗的辅助治疗,用ENBA治疗,剂量为15毫克/千克,静脉注射(抑制NA诱导的癫痫发作的最小有效剂量)。我们收集了长达14天的脑电图活动、癫痫发作抑制结果、每日体温和体重、心率、中毒症状、神经病理学和致死数据。如果不使用ENBA,因接触NA而死亡的比例为45%,而使用ENBA(无论是单独使用还是与咪达唑仑联合使用)后,存活率分别提高到80%和90%。此外,ENBA还能迅速而持久地抑制癫痫发作,在48小时内恢复中毒症状、低体温和心动过缓,并且没有发现明显的神经病理变化。我们的研究结果证实,ENBA是一种有效的A/N辅助药物,可用于NA暴露的延迟医学治疗。
{"title":"Pharmacology of Adenosine A<sub>1</sub> Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication.","authors":"Tsung-Ming Shih, Crystal Munoz, Cindy Acon-Chen, Zora-Maya Keith","doi":"10.1007/s12640-024-00717-z","DOIUrl":"10.1007/s12640-024-00717-z","url":null,"abstract":"<p><p>Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A<sub>1</sub> adenosine receptor (A<sub>1</sub>AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"41"},"PeriodicalIF":2.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum. 维生素 C 对谷氨酸钠诱导的大鼠纹状体和小脑氧化应激中 ATP 酶活性的作用
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-08-30 DOI: 10.1007/s12640-024-00719-x
Olusegun L Adebayo, Vivian A Agu, Grace A Idowu, Blessing C Ezejiaku, Adeleke K Atunnise

Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200 mg/kg b.wgt orally in 0.9% saline solution) only for 3 weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na+/K+-, Ca2+-, Mg2+- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.

谷氨酸一钠(味精)是一种无声的兴奋性毒素,被用作增味剂,但却对消费者的健康造成严重危害。味精作为主要的兴奋性神经递质在神经元功能中发挥作用。味精进入血液后,最终会增加大脑谷氨酸含量,主要通过氧化应激造成功能紊乱。这项研究评估了大量摄入味精的毒性效应以及维生素 C 对雄性 Wistar 大鼠纹状体和小脑中 ATP 酶活性的调节作用。研究将大鼠分为四组(A-D):A 组仅喂食大鼠表演;B 组喂食含 15% 味精的食物;C 组仅口服维生素 C(200 毫克/千克体重,溶于 0.9% 生理盐水中)3 周;D 组大鼠喂食味精和维生素 C。味精会增加丙二醛(MDA)水平,并显著降低过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性以及谷胱甘肽(GSH)水平。味精会明显损害纹状体和小脑 ATP 酶(Na+/K+-、Ca2+-、Mg2+- 和总 ATP 酶)的活性。维生素 C 可消除味精诱导的氧化应激并改善 ATP 酶的活性。研究结果表明,维生素 C 有助于改善大鼠纹状体和小脑中膜结合 ATP 酶的功能,从而抵御味精的毒性。
{"title":"The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.","authors":"Olusegun L Adebayo, Vivian A Agu, Grace A Idowu, Blessing C Ezejiaku, Adeleke K Atunnise","doi":"10.1007/s12640-024-00719-x","DOIUrl":"10.1007/s12640-024-00719-x","url":null,"abstract":"<p><p>Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200 mg/kg b.wgt orally in 0.9% saline solution) only for 3 weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na<sup>+</sup>/K<sup>+</sup>-, Ca<sup>2+</sup>-, Mg<sup>2+</sup>- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"40"},"PeriodicalIF":2.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methylphenidate Exposing During Neurodevelopment Alters Amino Acid Profile, Astrocyte Marker and Glutamatergic Excitotoxicity in the Rat Striatum. 神经发育期暴露于哌醋甲酯会改变大鼠纹状体的氨基酸谱、星形胶质细胞标记和谷氨酸能兴奋毒性
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-08-27 DOI: 10.1007/s12640-024-00718-y
Felipe Schmitz, Luz Elena Durán-Carabali, Alessandra Schmitt Rieder, Josiane S Silveira, Osmar Vieira Ramires Junior, Larissa D Bobermin, André Quincozes-Santos, Vinícius S Alves, Robson Coutinho-Silva, Luiz Eduardo B Savio, Daniella M Coelho, Carmen R Vargas, Carlos Alexandre Netto, Angela T S Wyse

There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na+,K+-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.

由于对哌醋甲酯(MPH)的神经化学和精神后果了解有限,因此针对年轻人和非临床目的的处方较多,这引起了公众对哌醋甲酯的关注。本研究旨在评估早期和慢性 MPH 治疗对纹状体的影响,重点关注氨基酸谱、谷氨酸能兴奋毒性、氧化还原状态、神经炎症和神经胶质细胞反应。雄性 Wistar 大鼠在出生后第 15 天至第 44 天接受 MPH(2.0 毫克/千克)或生理盐水治疗。最后一次给药后进行生化和组织学分析。MPH 改变了纹状体中的氨基酸谱,增加了谷氨酸和鸟氨酸的含量,同时降低了丝氨酸、苯丙氨酸和支链氨基酸(亮氨酸、缬氨酸和异亮氨酸)的含量。经 MPH 处理的大鼠纹状体中谷氨酸摄取和 Na+,K+-ATPase 活性降低,ATP 水平升高,这是谷氨酸能兴奋毒性的指标。此外,MPH 还会引起脂质过氧化和硝化应激,增加 TNF α 的表达,诱导高水平的星形胶质细胞,并导致 BDNF 水平下降。总之,我们的研究结果表明,早期长期使用 MPH 会诱导纹状体中与损伤相关的通路平行激活,并增加其在青少年时期的脆弱性。此外,本文提供的数据有助于揭示MPH诱导纹状体损伤的机制及其对神经发育障碍的潜在影响。
{"title":"Methylphenidate Exposing During Neurodevelopment Alters Amino Acid Profile, Astrocyte Marker and Glutamatergic Excitotoxicity in the Rat Striatum.","authors":"Felipe Schmitz, Luz Elena Durán-Carabali, Alessandra Schmitt Rieder, Josiane S Silveira, Osmar Vieira Ramires Junior, Larissa D Bobermin, André Quincozes-Santos, Vinícius S Alves, Robson Coutinho-Silva, Luiz Eduardo B Savio, Daniella M Coelho, Carmen R Vargas, Carlos Alexandre Netto, Angela T S Wyse","doi":"10.1007/s12640-024-00718-y","DOIUrl":"10.1007/s12640-024-00718-y","url":null,"abstract":"<p><p>There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na<sup>+</sup>,K<sup>+</sup>-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"39"},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment. 帕金森病患者褪黑激素昼夜节律失调:表达困惑。
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-08-23 DOI: 10.1007/s12640-024-00716-0
Areej Turkistani, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Walaa A Negm, Mostafa M Bahaa, Mostafa E Metawee, Gaber El-Saber Batiha

Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.

褪黑素(MTN)是松果体释放的一种神经激素。MTN 的分泌受不同神经元回路的调控,包括视网膜下丘脑束和丘脑上核(SCN),它们受到光的影响。MTN 对包括帕金森病(PD)在内的多种神经退行性疾病具有神经保护作用。帕金森病患者的 MTN 循环水平严重下降。然而,其根本原因尚未完全阐明。因此,本综述旨在讨论帕金森病中 MTN 水平降低的潜在原因。帕金森病患者 MTN 昼夜节律失调会导致白天极度嗜睡。MTN反应迟钝的潜在机制可能是由于光照减少、视网膜光传输受损、昼夜节律起搏器退化和自主神经功能障碍。总之,SCN 的退化和相关的神经变性,加上神经炎症和 NF-κB 及 NLRP3 炎性体的激活,导致 MTN 分泌失调。因此,低血清 MTN 水平反映了帕金森病的严重程度,可能成为潜在的生物标志物。建议开展临床前和临床研究,以明确 PD 中 MTN 水平低的根本原因。
{"title":"Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment.","authors":"Areej Turkistani, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Walaa A Negm, Mostafa M Bahaa, Mostafa E Metawee, Gaber El-Saber Batiha","doi":"10.1007/s12640-024-00716-0","DOIUrl":"10.1007/s12640-024-00716-0","url":null,"abstract":"<p><p>Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"38"},"PeriodicalIF":2.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone. 单体淀粉样肽诱导的人类少突胶质细胞系和小鼠脑初级混合胶质细胞培养物的毒性:神经类固醇 3α-O-allyl-allopregnanolone 的神经保护作用证据。
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-08-05 DOI: 10.1007/s12640-024-00715-1
Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan

Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.

无症状阿尔茨海默病(AD)大脑中出现的淀粉样肽(Aβ)单体(ABM)被认为没有神经毒性,而ABM向低聚物的转变/聚集是Aβ诱导毒性的决定性因素,因为Aβ在3 µM以下主要是单体,超过这一浓度就会聚集。然而,最近的成像和/或组织病理学研究发现,在没有聚集的 Aβ 寡聚体的情况下,AD 前驱期大脑中的髓鞘发生了改变,这表明 ABM 可能会诱导 AD 早期阶段的髓鞘生成细胞中毒。为了验证这一假设,我们在这里研究了 ABM 对人类少突胶质细胞系(HOG)活力的影响,HOG 是产生髓鞘蛋白的可靠少突胶质细胞模型。此外,为了密切模拟少突胶质细胞与其他神经胶质细胞之间调节髓鞘化的相互作用,我们还研究了 ABM 对小鼠大脑原代混合神经胶质细胞培养物的影响。各种方法的综合结果表明,ABM 浓度(600 nM-1 µM)极低于 3 µM,会显著降低 HOG 细胞和小鼠脑原代混合胶质细胞的存活率。有趣的是,使用特定细胞类型标记物进行的流式细胞术研究表明,少突胶质细胞是最容易受到 ABM 毒性影响的胶质细胞群。我们的研究还表明,神经类固醇 3α-O-allyl-allopregnanolone BR351(250 nM 和 500 nM)能有效防止 ABM 诱导的 HOG 和脑初级神经胶质细胞毒性。GABA-A受体拮抗剂双谷氨酸(50-100 nM)无法阻断/降低 BR351 对 ABM 诱导的 HOG 和原代胶质细胞毒性的影响,这表明 BR351 对这些细胞诱发的神经保护作用可能并不依赖于神经类固醇对 GABA-A 受体的异构调节。总之,我们的研究结果表明,进一步探索 BR351 的治疗潜力可能会为开发有效的神经保护策略提供有趣的前景。
{"title":"Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone.","authors":"Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan","doi":"10.1007/s12640-024-00715-1","DOIUrl":"10.1007/s12640-024-00715-1","url":null,"abstract":"<p><p>Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"37"},"PeriodicalIF":2.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note to: Topiramate Confers Neuroprotection Against Methylphenidate-Induced Neurodegeneration in Dentate Gyrus and CA1 Regions of Hippocampus via CREB/BDNF Pathway in Rats. 撤稿说明:托吡酯通过CREB/BDNF通路对哌醋甲酯诱导的大鼠海马齿状回和CA1区神经退行性变具有神经保护作用
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-25 DOI: 10.1007/s12640-024-00714-2
Majid Motaghinejad, Manijeh Motevalian, Mohammad Abdollahi, Mansour Heidari, Zahra Madjd
{"title":"Retraction Note to: Topiramate Confers Neuroprotection Against Methylphenidate-Induced Neurodegeneration in Dentate Gyrus and CA1 Regions of Hippocampus via CREB/BDNF Pathway in Rats.","authors":"Majid Motaghinejad, Manijeh Motevalian, Mohammad Abdollahi, Mansour Heidari, Zahra Madjd","doi":"10.1007/s12640-024-00714-2","DOIUrl":"10.1007/s12640-024-00714-2","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"36"},"PeriodicalIF":2.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer's Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway. 撤稿说明:罗氟司特通过抑制海马中NF-κB/BACE-1介导的Aβ生成和激活cAMP/BDNF信号通路,减轻脑室内注射链脲佐菌素导致的大鼠散发性阿尔茨海默病的病理症状。
IF 2.9 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-15 DOI: 10.1007/s12640-024-00713-3
Noorul Hasan, Saima Zameer, Abul Kalam Najmi, Suhel Parvez, Mohd Akhtar
{"title":"Retraction Note: Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer's Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway.","authors":"Noorul Hasan, Saima Zameer, Abul Kalam Najmi, Suhel Parvez, Mohd Akhtar","doi":"10.1007/s12640-024-00713-3","DOIUrl":"10.1007/s12640-024-00713-3","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"34"},"PeriodicalIF":2.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neurotoxicity Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1