Virtual stress plays tricks on cells.

IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Systems Pub Date : 2023-07-19 DOI:10.1016/j.cels.2023.06.006
Alexander Loewer
{"title":"Virtual stress plays tricks on cells.","authors":"Alexander Loewer","doi":"10.1016/j.cels.2023.06.006","DOIUrl":null,"url":null,"abstract":"<p><p>Optogenetics enables the induction of virtual stress, which separates stress signaling from cellular damage. This provides new insights into the dynamics of the integrated stress response and reveals the mechanisms through which cells form memories of past stress events to guide their response to acute stress.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.06.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Optogenetics enables the induction of virtual stress, which separates stress signaling from cellular damage. This provides new insights into the dynamics of the integrated stress response and reveals the mechanisms through which cells form memories of past stress events to guide their response to acute stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟压力对细胞起作用。
光遗传学能够诱导虚拟压力,将压力信号与细胞损伤分离。这为综合应激反应的动力学提供了新的见解,并揭示了细胞通过形成过去应激事件的记忆来指导其对急性应激反应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Systems
Cell Systems Medicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍: In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.
期刊最新文献
pH and buffering capacity: Fundamental yet underappreciated drivers of algal-bacterial interactions What’s driving rhythmic gene expression: Sleep or the clock? Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles On knowing a gene: A distributional hypothesis of gene function Acute response to pathogens in the early human placenta at single-cell resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1