Jiali Qiao, Zhiying Zhao, Yaru Li, Minghui Lu, Shuli Man, Shengying Ye, Qiang Zhang, Long Ma
{"title":"Recent advances of food safety detection by nucleic acid isothermal amplification integrated with CRISPR/Cas.","authors":"Jiali Qiao, Zhiying Zhao, Yaru Li, Minghui Lu, Shuli Man, Shengying Ye, Qiang Zhang, Long Ma","doi":"10.1080/10408398.2023.2246558","DOIUrl":null,"url":null,"abstract":"<p><p>Food safety problems have become one of the most important public health issues worldwide. Therefore, the development of rapid, effective and robust detection is of great importance. Amongst a range of methods, nucleic acid isothermal amplification (NAIA) plays a great role in food safety detection. However, the widespread application remains limited due to a few shortcomings. CRISPR/Cas system has emerged as a powerful tool in nucleic acid detection, which could be readily integrated with NAIA to improve the detection sensitivity, specificity, adaptability versatility and dependability. However, currently there was a lack of a comprehensive summary regarding the integration of NAIA and CRISPR/Cas in the field of food safety detection. In this review, the recent advances in food safety detection based on CRISPR/Cas-integrated NAIA were comprehensively reviewed. To begin with, the development of NAIA was summarized. Then, the types and working principles of CRISPR/Cas were introduced. The applications of the integration of NAIA and CRISPR/Cas for food safety were mainly introduced and objectively discussed. Lastly, current challenges and future opportunities were proposed. In summary, this technology is expected to become an important approach for food safety detection, leading to a safer and more reliable food industry.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"12061-12082"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2023.2246558","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food safety problems have become one of the most important public health issues worldwide. Therefore, the development of rapid, effective and robust detection is of great importance. Amongst a range of methods, nucleic acid isothermal amplification (NAIA) plays a great role in food safety detection. However, the widespread application remains limited due to a few shortcomings. CRISPR/Cas system has emerged as a powerful tool in nucleic acid detection, which could be readily integrated with NAIA to improve the detection sensitivity, specificity, adaptability versatility and dependability. However, currently there was a lack of a comprehensive summary regarding the integration of NAIA and CRISPR/Cas in the field of food safety detection. In this review, the recent advances in food safety detection based on CRISPR/Cas-integrated NAIA were comprehensively reviewed. To begin with, the development of NAIA was summarized. Then, the types and working principles of CRISPR/Cas were introduced. The applications of the integration of NAIA and CRISPR/Cas for food safety were mainly introduced and objectively discussed. Lastly, current challenges and future opportunities were proposed. In summary, this technology is expected to become an important approach for food safety detection, leading to a safer and more reliable food industry.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.