Trumpet plots: visualizing the relationship between allele frequency and effect size in genetic association studies.

GigaByte (Hong Kong, China) Pub Date : 2023-09-01 eCollection Date: 2023-01-01 DOI:10.46471/gigabyte.89
Lucia Corte, Lathan Liou, Paul F O'Reilly, Judit García-González
{"title":"Trumpet plots: visualizing the relationship between allele frequency and effect size in genetic association studies.","authors":"Lucia Corte, Lathan Liou, Paul F O'Reilly, Judit García-González","doi":"10.46471/gigabyte.89","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in genome-wide association and sequencing studies have shown that the genetic architecture of complex traits and diseases involves a combination of rare and common genetic variants distributed throughout the genome. One way to better understand this architecture is to visualize genetic associations across a wide range of allele frequencies. However, there is currently no standardized or consistent graphical representation for effectively illustrating these results. Here we propose a standardized approach for visualizing the effect size of risk variants across the allele frequency spectrum. The proposed plots have a distinctive trumpet shape: with the majority of variants having high frequency and small effects, and a small number of variants having lower frequency and larger effects. To demonstrate the utility of trumpet plots in illustrating the relationship between the number of variants, their frequency, and the magnitude of their effects in shaping the genetic architecture of complex traits and diseases, we generated trumpet plots for more than one hundred traits in the UK Biobank. To facilitate their broader use, we developed an R package, 'TrumpetPlots' (available at the Comprehensive R Archive Network) and R Shiny application, 'Shiny Trumpets' (available at https://juditgg.shinyapps.io/shinytrumpets/) that allows users to explore these results and submit their own data.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2023 ","pages":"gigabyte89"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in genome-wide association and sequencing studies have shown that the genetic architecture of complex traits and diseases involves a combination of rare and common genetic variants distributed throughout the genome. One way to better understand this architecture is to visualize genetic associations across a wide range of allele frequencies. However, there is currently no standardized or consistent graphical representation for effectively illustrating these results. Here we propose a standardized approach for visualizing the effect size of risk variants across the allele frequency spectrum. The proposed plots have a distinctive trumpet shape: with the majority of variants having high frequency and small effects, and a small number of variants having lower frequency and larger effects. To demonstrate the utility of trumpet plots in illustrating the relationship between the number of variants, their frequency, and the magnitude of their effects in shaping the genetic architecture of complex traits and diseases, we generated trumpet plots for more than one hundred traits in the UK Biobank. To facilitate their broader use, we developed an R package, 'TrumpetPlots' (available at the Comprehensive R Archive Network) and R Shiny application, 'Shiny Trumpets' (available at https://juditgg.shinyapps.io/shinytrumpets/) that allows users to explore these results and submit their own data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小号图:可视化遗传关联研究中等位基因频率与效应大小之间的关系。
全基因组关联和测序研究的最新进展表明,复杂性状和疾病的遗传结构涉及分布在整个基因组中的罕见和常见遗传变异的组合。要更好地理解这种结构,一种方法是将广泛等位基因频率范围内的遗传关联可视化。然而,目前还没有标准化或一致的图形表示法来有效地说明这些结果。在此,我们提出了一种标准化的方法,用于直观显示风险变异在等位基因频率谱中的效应大小。所提出的图具有独特的喇叭形状:大多数变异具有高频率和小效应,而少数变异具有较低频率和较大效应。为了证明喇叭图在说明变体数量、变体频率及其对塑造复杂性状和疾病遗传结构的影响程度之间的关系方面的实用性,我们为英国生物库中的一百多个性状生成了喇叭图。为了便于更广泛地使用,我们开发了一个 R 软件包 "TrumpetPlots"(可在综合 R Archive Network 上获取)和 R Shiny 应用程序 "Shiny Trumpets"(可在 https://juditgg.shinyapps.io/shinytrumpets/ 上获取),允许用户探索这些结果并提交自己的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
The genome of the sapphire damselfish Chrysiptera cyanea: a new resource to support further investigation of the evolution of Pomacentrids. Polyploid genome assembly of Cardamine chenopodiifolia. NeuroVar: an open-source tool for the visualization of gene expression and variation data for biomarkers of neurological diseases. Whole-genome re-sequencing of the Baikal seal and other phocid seals for a glimpse into their genetic diversity, demographic history, and phylogeny. Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1