Pavel Tregub, Yuri Motin, Vladimir Kulikov, Pavel Kovzelev, Aleksandra Chaykovskaya, Irada Ibrahimli
{"title":"Ultrastructural Changes in Hippocampal Region CA1 Neurons After Exposure to Permissive Hypercapnia and/or Normobaric Hypoxia.","authors":"Pavel Tregub, Yuri Motin, Vladimir Kulikov, Pavel Kovzelev, Aleksandra Chaykovskaya, Irada Ibrahimli","doi":"10.1007/s10571-023-01407-8","DOIUrl":null,"url":null,"abstract":"<p><p>Isolated exposure to intermittent hypoxia and permissive hypercapnia activates signaling mechanisms that induce ultrastructural changes in mitochondria and endoplasmic reticulum, accompanied by the development of maximal ischemic tolerance in neurons under the combined influence of these factors. However, there are a lack of data on the combined impact of these factors on the ultrastructure of neuronal organelles. The present study aims to comparatively assess the ultrastructural changes in neurons following isolated and combined exposure to hypoxia and hypercapnia, as well as to correlate these changes with the neuroprotective potential previously observed for these factors. Following a 15-session course of 30-min exposures to permissive hypercapnia (P<sub>CO2</sub> ≈ 50 mmHg) and/or normobaric hypoxia (P<sub>O2</sub> ≈ 150 mmHg), morphometric assessment was conducted to evaluate the extent of ultrastructural changes in hippocampal neurons (mitochondria, perinuclear space, and granular endoplasmic reticulum). It was found that in hippocampal neurons from the CA1 region, permissive hypercapnia resulted in increased mitochondrial size, expansion of membranous compartments of the granular endoplasmic reticulum, and perinuclear space. Normobaric hypoxia affected only mitochondrial size, while hypercapnic hypoxia specifically widened the perinuclear space. These ultrastructural changes objectively reflect varying degrees of the influence of hypoxia and hypercapnia on organelles responsible for energy metabolism, anti-apoptotic, and synthetic functions of neurons. This confirms the effect of potentiation of their neuroprotective effects under combined exposure and highlights the dominant role of the hypercapnic component in this mechanism.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":" ","pages":"4209-4217"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-023-01407-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Isolated exposure to intermittent hypoxia and permissive hypercapnia activates signaling mechanisms that induce ultrastructural changes in mitochondria and endoplasmic reticulum, accompanied by the development of maximal ischemic tolerance in neurons under the combined influence of these factors. However, there are a lack of data on the combined impact of these factors on the ultrastructure of neuronal organelles. The present study aims to comparatively assess the ultrastructural changes in neurons following isolated and combined exposure to hypoxia and hypercapnia, as well as to correlate these changes with the neuroprotective potential previously observed for these factors. Following a 15-session course of 30-min exposures to permissive hypercapnia (PCO2 ≈ 50 mmHg) and/or normobaric hypoxia (PO2 ≈ 150 mmHg), morphometric assessment was conducted to evaluate the extent of ultrastructural changes in hippocampal neurons (mitochondria, perinuclear space, and granular endoplasmic reticulum). It was found that in hippocampal neurons from the CA1 region, permissive hypercapnia resulted in increased mitochondrial size, expansion of membranous compartments of the granular endoplasmic reticulum, and perinuclear space. Normobaric hypoxia affected only mitochondrial size, while hypercapnic hypoxia specifically widened the perinuclear space. These ultrastructural changes objectively reflect varying degrees of the influence of hypoxia and hypercapnia on organelles responsible for energy metabolism, anti-apoptotic, and synthetic functions of neurons. This confirms the effect of potentiation of their neuroprotective effects under combined exposure and highlights the dominant role of the hypercapnic component in this mechanism.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.