首页 > 最新文献

Cellular and Molecular Neurobiology最新文献

英文 中文
Wnt-5a Signaling Mediates Metaplasticity at Hippocampal CA3-CA1 Synapses in Mice. Wnt-5a信号介导小鼠海马CA3-CA1突触的变态反应
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-11-13 DOI: 10.1007/s10571-024-01512-2
Jorge Parodi, Rodrigo G Mira, Marco Fuenzalida, Waldo Cerpa, Felipe G Serrano, Cheril Tapia-Rojas, Ataulfo Martinez-Torres, Nibaldo C Inestrosa

Wnt signaling plays a role in synaptic plasticity, but the specific cellular events and molecular components involved in Wnt signaling-mediated synaptic plasticity are not well defined. Here, we report a change in the threshold required to induce synaptic plasticity that facilitates the induction of long-term potentiation (LTP) and inhibits the induction of long-term depression (LTD) during brief exposure to the noncanonical ligand Wnt-5a. Both effects are related to the metaplastic switch of hippocampal CA3-CA1 synaptic transmission, a complex mechanism underlying the regulation of the threshold required to induce synaptic plasticity and of synaptic efficacy. We observed an early increase in the amplitude of field excitatory postsynaptic potentials (fEPSPs) that persisted over time, including after washout. The first phase involves an increase in the fEPSP amplitude that is required to trigger a spontaneous second phase that depends on Jun N-terminal kinase (JNK) and N-methyl D-aspartate receptor (NMDAR) activity. These changes are prevented by treatment with secreted frizzled-related protein 2 (sFRP-2), an endogenous antagonist of Wnt ligands. Here, we demonstrate the contribution of Wnt-5a signaling to a process associated with metaplasticity at CA3-CA1 synapses that favors LTP over LTD.

Wnt信号在突触可塑性中发挥作用,但Wnt信号介导的突触可塑性所涉及的特定细胞事件和分子成分尚未得到很好的界定。在这里,我们报告了诱导突触可塑性所需的阈值的变化,这种变化在短暂暴露于非经典配体 Wnt-5a 的过程中促进了长期延时(LTP)的诱导,并抑制了长期抑制(LTD)的诱导。这两种效应都与海马 CA3-CA1 突触传递的元突变开关有关,这是一种调节诱导突触可塑性所需的阈值和突触效能的复杂机制。我们观察到场兴奋突触后电位(fEPSPs)振幅的早期增加,这种增加随着时间的推移而持续,包括在冲洗之后。第一阶段包括 fEPSP 振幅的增加,它是触发自发的第二阶段所必需的,第二阶段取决于 Jun N-terminal kinase (JNK) 和 N-methyl D-aspartate receptor (NMDAR) 的活性。用Wnt配体的内源性拮抗剂分泌型frizzled相关蛋白2(sFRP-2)处理可阻止这些变化。在这里,我们证明了 Wnt-5a 信号传导对 CA3-CA1 突触的变态反应过程的贡献,该过程有利于 LTP 而非 LTD。
{"title":"Wnt-5a Signaling Mediates Metaplasticity at Hippocampal CA3-CA1 Synapses in Mice.","authors":"Jorge Parodi, Rodrigo G Mira, Marco Fuenzalida, Waldo Cerpa, Felipe G Serrano, Cheril Tapia-Rojas, Ataulfo Martinez-Torres, Nibaldo C Inestrosa","doi":"10.1007/s10571-024-01512-2","DOIUrl":"10.1007/s10571-024-01512-2","url":null,"abstract":"<p><p>Wnt signaling plays a role in synaptic plasticity, but the specific cellular events and molecular components involved in Wnt signaling-mediated synaptic plasticity are not well defined. Here, we report a change in the threshold required to induce synaptic plasticity that facilitates the induction of long-term potentiation (LTP) and inhibits the induction of long-term depression (LTD) during brief exposure to the noncanonical ligand Wnt-5a. Both effects are related to the metaplastic switch of hippocampal CA3-CA1 synaptic transmission, a complex mechanism underlying the regulation of the threshold required to induce synaptic plasticity and of synaptic efficacy. We observed an early increase in the amplitude of field excitatory postsynaptic potentials (fEPSPs) that persisted over time, including after washout. The first phase involves an increase in the fEPSP amplitude that is required to trigger a spontaneous second phase that depends on Jun N-terminal kinase (JNK) and N-methyl D-aspartate receptor (NMDAR) activity. These changes are prevented by treatment with secreted frizzled-related protein 2 (sFRP-2), an endogenous antagonist of Wnt ligands. Here, we demonstrate the contribution of Wnt-5a signaling to a process associated with metaplasticity at CA3-CA1 synapses that favors LTP over LTD.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"76"},"PeriodicalIF":3.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spinal Muscular Atrophy: Current Medications and Re-purposed Drugs. 脊髓肌肉萎缩症:目前的药物和替代药物。
IF 4.3 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-11-08 DOI: 10.1007/s10571-024-01511-3
Soumyadutta Basak, Nupur Biswas, Jaya Gill, Shashaanka Ashili

Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disorder that is characterized by gradual muscle weakness and atrophy due to the degeneration of alpha motor neurons that are present on the anterior horn of the spinal cord. Despite the comprehensive investigations conducted by global scientists, effective treatments or interventions remain elusive. The time- and resource-intensive nature of the initial stages of drug research underscores the need for alternate strategies like drug repurposing. This review explores the repurposed drugs that have shown some improvement in treating SMA, including branaplam, riluzole, olesoxime, harmine, and prednisolone. The current strategy for medication repurposing, however, lacks systematicity and frequently depends more on serendipitous discoveries than on organized approaches. To speed up the development of successful therapeutic interventions, it is apparent that a methodical approach targeting the molecular origins of SMA is strictly required.

脊髓性肌萎缩症(SMA)是一种常染色体隐性遗传的神经肌肉疾病,其特征是由于脊髓前角的α运动神经元变性而导致肌肉逐渐无力和萎缩。尽管全球科学家进行了全面的研究,但有效的治疗或干预措施仍然遥遥无期。药物研究初期的时间和资源密集型特点凸显了药物再利用等替代策略的必要性。本综述探讨了对治疗 SMA 有一定疗效的再利用药物,包括 branaplam、利鲁唑、奥列唑肟、哈米那和泼尼松龙。然而,目前的药物再利用战略缺乏系统性,经常更多地依赖于偶然的发现,而不是有组织的方法。为了加快开发成功的治疗干预措施,显然需要针对 SMA 的分子起源采取有条不紊的方法。
{"title":"Spinal Muscular Atrophy: Current Medications and Re-purposed Drugs.","authors":"Soumyadutta Basak, Nupur Biswas, Jaya Gill, Shashaanka Ashili","doi":"10.1007/s10571-024-01511-3","DOIUrl":"10.1007/s10571-024-01511-3","url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disorder that is characterized by gradual muscle weakness and atrophy due to the degeneration of alpha motor neurons that are present on the anterior horn of the spinal cord. Despite the comprehensive investigations conducted by global scientists, effective treatments or interventions remain elusive. The time- and resource-intensive nature of the initial stages of drug research underscores the need for alternate strategies like drug repurposing. This review explores the repurposed drugs that have shown some improvement in treating SMA, including branaplam, riluzole, olesoxime, harmine, and prednisolone. The current strategy for medication repurposing, however, lacks systematicity and frequently depends more on serendipitous discoveries than on organized approaches. To speed up the development of successful therapeutic interventions, it is apparent that a methodical approach targeting the molecular origins of SMA is strictly required.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"75"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Epistasis and Systems Biology Approaches to Uncover a Pharmacogenomic Map Linked to Pain, Anti-Inflammatory and Immunomodulating Agents (PAIma) in a Healthy Cohort. 用协同外显子学和系统生物学方法揭示健康人群中与疼痛、抗炎和免疫调节药物(PAIma)相关的药物基因组图谱
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-11-06 DOI: 10.1007/s10571-024-01504-2
Alireza Sharafshah, Majid Motovali-Bashi, Parvaneh Keshavarz, Kenneth Blum

The global public health addiction crisis has been stark, with over 932,400 deaths in the USA and Canada from opioid overdose since 1999-2020, surpassing the mortality rates at the top of the HIV/AIDS epidemic. Both nations exhibit opioid consumption rates significantly above the norm for developed countries. Analgesic type of opioids present both therapeutic benefits and substantial health risks, necessitating balanced drug regulation, careful prescribing, and dedicated opioid stewardship. The role of the cytochrome P450 2D6 (CYP2D6) system (Enzymatic functions) in metabolizing opioids highlights the potential of genotype-guided analgesia. By integrating Pharmacogenomics (PGx), this approach aims to optimize pain management, enhance safety, and reduce addiction risks. This understanding prompted the utilization of multifactor dimensionality reduction (MDR) to explore a range of phenotypes including PGx and gene-gene interactions (GGI) in a healthy cohort, thereby personalizing pain management strategies. The study sampled 100 unrelated healthy Western Iranians and 100 individuals from the 1000 Genome Project. Pre-testing involved searching for PGx annotations (variants associated with drug-gene-diseases) related to pain sensitivity and inflammation using the PharmGKB database, which identified 128 relevant genes. A questionnaire helped select 100 participants who had never used potent opioids but also other psychoactive agents (e.g., nicotine, amphetamines, etc.) and disease-related drugs. Whole-exome sequencing (WES) was then employed to analyze these genes in an Iranian cohort. Further analyses included MDR for identifying synergistic gene annotations and GGI for exploring complex gene interactions through the Visualization of Statistical Epistasis Networks (ViSEN). The study identified a Pain, Anti-Inflammatory, and Immunomodulating agents (PAIma) panel from the 128 genes, resulting in 55,590 annotations across 21 curated pathways. After filtering, 54 significant structural or regulatory variants were identified. This research also highlighted novel gene relationships involving the CYP3A5 gene, hsa-miR-355-5p, Paliperidone, and CYP2D6, which warrant further investigation. This study offers a novel pharmacogenetic framework that could potentially transform opioid prescribing practices to mitigate misuse and enhance personalized pain management. Further validation of these findings from multi countries and ethnic groups could guide clinicians in implementing DNA-based opioid prescribing, aligning treatment more closely with individual genetic profiles.

自 1999 年至 2020 年,美国和加拿大因阿片类药物过量致死的人数超过 93.24 万人,超过了艾滋病毒/艾滋病肆虐时的死亡率。这两个国家的阿片类药物消费率大大高于发达国家的正常水平。阿片类镇痛药既有治疗效果,也有很大的健康风险,因此需要平衡的药物监管、谨慎的处方和专门的阿片类药物管理。细胞色素 P450 2D6 (CYP2D6) 系统(酶功能)在阿片类药物代谢中的作用凸显了基因型指导镇痛的潜力。通过整合药物基因组学(PGx),这种方法旨在优化疼痛管理、提高安全性并降低成瘾风险。这种认识促使我们利用多因素降维(MDR)技术来探索一系列表型,包括健康人群中的药物基因组学(PGx)和基因-基因相互作用(GGI),从而制定个性化的疼痛管理策略。该研究抽取了 100 名无血缘关系的健康西伊朗人和 100 名来自 "千人基因组计划 "的个体。预先测试包括使用PharmGKB数据库搜索与疼痛敏感性和炎症有关的PGx注释(与药物基因疾病相关的变异),结果发现了128个相关基因。调查问卷帮助选出了 100 名参与者,他们从未使用过强效阿片类药物,但也使用过其他精神活性药物(如尼古丁、苯丙胺等)和疾病相关药物。然后采用全外显子组测序(WES)技术对伊朗队列中的这些基因进行分析。进一步的分析包括用于识别协同基因注释的 MDR 和通过统计外显网络可视化(ViSEN)探索复杂基因相互作用的 GGI。该研究从 128 个基因中识别出了疼痛、抗炎和免疫调节剂(PAIma)面板,从而在 21 个策划的通路中发现了 55,590 个注释。经过筛选,确定了 54 个重要的结构或调控变异。这项研究还强调了涉及 CYP3A5 基因、hsa-miR-355-5p、帕潘利酮和 CYP2D6 的新型基因关系,这些关系值得进一步研究。这项研究提供了一个新的药物遗传学框架,有可能改变阿片类药物的处方实践,从而减少滥用并加强个性化疼痛管理。从多个国家和种族群体中进一步验证这些研究结果,可以指导临床医生实施基于 DNA 的阿片类药物处方,使治疗更符合个体的遗传特征。
{"title":"Synergistic Epistasis and Systems Biology Approaches to Uncover a Pharmacogenomic Map Linked to Pain, Anti-Inflammatory and Immunomodulating Agents (PAIma) in a Healthy Cohort.","authors":"Alireza Sharafshah, Majid Motovali-Bashi, Parvaneh Keshavarz, Kenneth Blum","doi":"10.1007/s10571-024-01504-2","DOIUrl":"10.1007/s10571-024-01504-2","url":null,"abstract":"<p><p>The global public health addiction crisis has been stark, with over 932,400 deaths in the USA and Canada from opioid overdose since 1999-2020, surpassing the mortality rates at the top of the HIV/AIDS epidemic. Both nations exhibit opioid consumption rates significantly above the norm for developed countries. Analgesic type of opioids present both therapeutic benefits and substantial health risks, necessitating balanced drug regulation, careful prescribing, and dedicated opioid stewardship. The role of the cytochrome P450 2D6 (CYP2D6) system (Enzymatic functions) in metabolizing opioids highlights the potential of genotype-guided analgesia. By integrating Pharmacogenomics (PGx), this approach aims to optimize pain management, enhance safety, and reduce addiction risks. This understanding prompted the utilization of multifactor dimensionality reduction (MDR) to explore a range of phenotypes including PGx and gene-gene interactions (GGI) in a healthy cohort, thereby personalizing pain management strategies. The study sampled 100 unrelated healthy Western Iranians and 100 individuals from the 1000 Genome Project. Pre-testing involved searching for PGx annotations (variants associated with drug-gene-diseases) related to pain sensitivity and inflammation using the PharmGKB database, which identified 128 relevant genes. A questionnaire helped select 100 participants who had never used potent opioids but also other psychoactive agents (e.g., nicotine, amphetamines, etc.) and disease-related drugs. Whole-exome sequencing (WES) was then employed to analyze these genes in an Iranian cohort. Further analyses included MDR for identifying synergistic gene annotations and GGI for exploring complex gene interactions through the Visualization of Statistical Epistasis Networks (ViSEN). The study identified a Pain, Anti-Inflammatory, and Immunomodulating agents (PAIma) panel from the 128 genes, resulting in 55,590 annotations across 21 curated pathways. After filtering, 54 significant structural or regulatory variants were identified. This research also highlighted novel gene relationships involving the CYP3A5 gene, hsa-miR-355-5p, Paliperidone, and CYP2D6, which warrant further investigation. This study offers a novel pharmacogenetic framework that could potentially transform opioid prescribing practices to mitigate misuse and enhance personalized pain management. Further validation of these findings from multi countries and ethnic groups could guide clinicians in implementing DNA-based opioid prescribing, aligning treatment more closely with individual genetic profiles.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"74"},"PeriodicalIF":3.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pesticide Exposure and Its Association with Parkinson's Disease: A Case-Control Analysis. 农药接触及其与帕金森病的关系:病例对照分析
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1007/s10571-024-01501-5
Ali Samareh, Hossein Pourghadamyari, Mohammad Hadi Nemtollahi, Hossein Ali Ebrahimi Meimand, Mohammad Erfan Norouzmahani, Gholamreza Asadikaram

Parkinson's disease (PD) is a complex disorder that arises from genetic and environmental factors. The current investigation endeavors to investigate the role of exposure to organochlorine (OCPs) and organophosphate pesticides (OPPs), recognized as the main environmental elements, in the genesis of PD. In this case-control study, 29 PD patients and 51 healthy subjects were involved. Gas chromatography was performed to measure the serum levels of organochlorine chemicals (2,4-DDT, 4,4-DDT, 2,4-DDE, 4,4-DDE, α-HCH, β-HCH, and γ-HCH). Furthermore, acetylcholinesterase (AChE) activity, arylesterase activity of paraoxonase-1 (PON-1), and several oxidative stress (OS) markers were assessed. The levels of OCPs in the PD patients were significantly higher than in the control subjects. In addition, AChE activity, arylesterase activity of PON-1, catalase activity, and superoxide dismutase 3 activity in PD patients were significantly less than controls. However, the levels of carbonyl protein, total antioxidant capacity, malondialdehyde, and nitric oxide in PD patients were higher than the controls. The findings of this investigation have indicated that OCPs and OPPs exposure could contribute to the development of Parkinson's disease. This potential linkage could either be established through the direct impact of these pesticides on the nervous system, leading to neurotoxicity, or via an indirect route through the triggering of OS.

帕金森病(PD)是一种由遗传和环境因素引起的复杂疾病。目前的调查致力于研究暴露于有机氯(OCP)和有机磷农药(OPP)这两种公认的主要环境因素在帕金森病发病中的作用。在这项病例对照研究中,共有 29 名帕金森氏症患者和 51 名健康受试者参与。研究人员采用气相色谱法测量了血清中有机氯化学物质(2,4-DDT、4,4-DDT、2,4-DDE、4,4-DDE、α-HCH、β-HCH 和 γ-HCH)的含量。此外,还评估了乙酰胆碱酯酶(AChE)活性、副氧自由基酶-1(PON-1)的芳酯酶活性以及几种氧化应激(OS)指标。帕金森氏症患者的氧化应激物质水平明显高于对照组。此外,PD 患者的 AChE 活性、PON-1 的芳基酯酶活性、过氧化氢酶活性和超氧化物歧化酶 3 活性均明显低于对照组。然而,羰基蛋白、总抗氧化能力、丙二醛和一氧化氮的水平在帕金森病患者中却高于对照组。这项研究结果表明,接触 OCPs 和 OPPs 可能会导致帕金森病的发生。这种潜在的联系可能是通过这些农药对神经系统的直接影响而导致神经中毒,也可能是通过触发操作系统的间接途径而建立的。
{"title":"Pesticide Exposure and Its Association with Parkinson's Disease: A Case-Control Analysis.","authors":"Ali Samareh, Hossein Pourghadamyari, Mohammad Hadi Nemtollahi, Hossein Ali Ebrahimi Meimand, Mohammad Erfan Norouzmahani, Gholamreza Asadikaram","doi":"10.1007/s10571-024-01501-5","DOIUrl":"10.1007/s10571-024-01501-5","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a complex disorder that arises from genetic and environmental factors. The current investigation endeavors to investigate the role of exposure to organochlorine (OCPs) and organophosphate pesticides (OPPs), recognized as the main environmental elements, in the genesis of PD. In this case-control study, 29 PD patients and 51 healthy subjects were involved. Gas chromatography was performed to measure the serum levels of organochlorine chemicals (2,4-DDT, 4,4-DDT, 2,4-DDE, 4,4-DDE, α-HCH, β-HCH, and γ-HCH). Furthermore, acetylcholinesterase (AChE) activity, arylesterase activity of paraoxonase-1 (PON-1), and several oxidative stress (OS) markers were assessed. The levels of OCPs in the PD patients were significantly higher than in the control subjects. In addition, AChE activity, arylesterase activity of PON-1, catalase activity, and superoxide dismutase 3 activity in PD patients were significantly less than controls. However, the levels of carbonyl protein, total antioxidant capacity, malondialdehyde, and nitric oxide in PD patients were higher than the controls. The findings of this investigation have indicated that OCPs and OPPs exposure could contribute to the development of Parkinson's disease. This potential linkage could either be established through the direct impact of these pesticides on the nervous system, leading to neurotoxicity, or via an indirect route through the triggering of OS.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"73"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods. 神经性病原体对认知的影响:通过计算方法研究分子模仿。
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-29 DOI: 10.1007/s10571-024-01509-x
Pascal Büttiker, Amira Boukherissa, Simon Weissenberger, Radek Ptacek, Martin Anders, Jiri Raboch, George B Stefano

Neurotropic pathogens, notably, herpesviruses, have been associated with significant neuropsychiatric effects. As a group, these pathogens can exploit molecular mimicry mechanisms to manipulate the host central nervous system to their advantage. Here, we present a systematic computational approach that may ultimately be used to unravel protein-protein interactions and molecular mimicry processes that have not yet been solved experimentally. Toward this end, we validate this approach by replicating a set of pre-existing experimental findings that document the structural and functional similarities shared by the human cytomegalovirus-encoded UL144 glycoprotein and human tumor necrosis factor receptor superfamily member 14 (TNFRSF14). We began with a thorough exploration of the Homo sapiens protein database using the Basic Local Alignment Search Tool (BLASTx) to identify proteins sharing sequence homology with UL144. Subsequently, we used AlphaFold2 to predict the independent three-dimensional structures of UL144 and TNFRSF14. This was followed by a comprehensive structural comparison facilitated by Distance-Matrix Alignment and Foldseek. Finally, we used AlphaFold-multimer and PPIscreenML to elucidate potential protein complexes and confirm the predicted binding activities of both UL144 and TNFRSF14. We then used our in silico approach to replicate the experimental finding that revealed TNFRSF14 binding to both B- and T-lymphocyte attenuator (BTLA) and glycoprotein domain and UL144 binding to BTLA alone. This computational framework offers promise in identifying structural similarities and interactions between pathogen-encoded proteins and their host counterparts. This information will provide valuable insights into the cognitive mechanisms underlying the neuropsychiatric effects of viral infections.

神经性病原体,尤其是疱疹病毒,与严重的神经精神影响有关。作为一个群体,这些病原体可以利用分子模拟机制来操纵宿主的中枢神经系统,使其对宿主有利。在这里,我们提出了一种系统的计算方法,最终可用于揭示尚未通过实验解决的蛋白质-蛋白质相互作用和分子模拟过程。为此,我们通过复制一组已有的实验结果来验证这种方法,这些实验结果记录了人类巨细胞病毒编码的 UL144 糖蛋白与人类肿瘤坏死因子受体超家族成员 14 (TNFRSF14) 在结构和功能上的相似性。我们首先使用基本局部比对搜索工具(BLASTx)对智人蛋白质数据库进行了彻底的探索,以确定与 UL144 有序列同源性的蛋白质。随后,我们使用 AlphaFold2 预测了 UL144 和 TNFRSF14 的独立三维结构。随后,我们利用距离矩阵比对和 Foldseek 进行了全面的结构比较。最后,我们使用 AlphaFold-multimer 和 PPIscreenML 阐明了潜在的蛋白质复合物,并确认了 UL144 和 TNFRSF14 的预测结合活性。然后,我们利用硅学方法复制了实验结果,发现 TNFRSF14 同时与 B 淋巴细胞和 T 淋巴细胞衰减因子(BTLA)和糖蛋白结构域结合,而 UL144 仅与 BTLA 结合。这一计算框架有望确定病原体编码蛋白与其宿主对应蛋白之间的结构相似性和相互作用。这些信息将为了解病毒感染对神经精神影响的认知机制提供宝贵的见解。
{"title":"Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods.","authors":"Pascal Büttiker, Amira Boukherissa, Simon Weissenberger, Radek Ptacek, Martin Anders, Jiri Raboch, George B Stefano","doi":"10.1007/s10571-024-01509-x","DOIUrl":"10.1007/s10571-024-01509-x","url":null,"abstract":"<p><p>Neurotropic pathogens, notably, herpesviruses, have been associated with significant neuropsychiatric effects. As a group, these pathogens can exploit molecular mimicry mechanisms to manipulate the host central nervous system to their advantage. Here, we present a systematic computational approach that may ultimately be used to unravel protein-protein interactions and molecular mimicry processes that have not yet been solved experimentally. Toward this end, we validate this approach by replicating a set of pre-existing experimental findings that document the structural and functional similarities shared by the human cytomegalovirus-encoded UL144 glycoprotein and human tumor necrosis factor receptor superfamily member 14 (TNFRSF14). We began with a thorough exploration of the Homo sapiens protein database using the Basic Local Alignment Search Tool (BLASTx) to identify proteins sharing sequence homology with UL144. Subsequently, we used AlphaFold2 to predict the independent three-dimensional structures of UL144 and TNFRSF14. This was followed by a comprehensive structural comparison facilitated by Distance-Matrix Alignment and Foldseek. Finally, we used AlphaFold-multimer and PPIscreenML to elucidate potential protein complexes and confirm the predicted binding activities of both UL144 and TNFRSF14. We then used our in silico approach to replicate the experimental finding that revealed TNFRSF14 binding to both B- and T-lymphocyte attenuator (BTLA) and glycoprotein domain and UL144 binding to BTLA alone. This computational framework offers promise in identifying structural similarities and interactions between pathogen-encoded proteins and their host counterparts. This information will provide valuable insights into the cognitive mechanisms underlying the neuropsychiatric effects of viral infections.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"72"},"PeriodicalIF":3.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy. 氧化应激、炎症和神经发育途径的遗传变异:对脊髓肌肉萎缩症易感性和病程的影响。
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-27 DOI: 10.1007/s10571-024-01508-y
Maruša Barbo, Blaž Koritnik, Lea Leonardis, Tanja Blagus, Vita Dolžan, Metka Ravnik-Glavač

The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.

脊髓性肌萎缩症(SMA)的表型与 SMN2 基因拷贝数密切相关。然而,即使在拷贝数相同的受影响个体中,疾病的严重程度和进展也有很大差异。本研究旨在探讨氧化应激、炎症和神经发育途径中的遗传变异对 SMA 易感性和临床进展的影响。我们对 54 名 SMA 患者和 163 名健康对照者的 20 个基因中的 31 个基因变异进行了基因分型。我们的研究结果显示了特定多态性与 SMA 易感性、疾病类型、症状出现年龄以及运动和呼吸功能之间的关联。值得注意的是,TNF rs1800629 和 BDNF rs6265 多态性对 SMA 易感性有保护作用,而 IL6 rs1800795 则与风险增加有关。经临床参数调整后,CARD8 rs2043211 和 BDNF rs6265 多态性与 SMA 类型相关,而 SOD2 rs4880、CAT rs1001179 和 MIR146A rs2910164 与发病年龄相关。此外,GPX1 rs1050450和HMOX1 rs2071747与运动功能评分和肺功能评分相关,而MIR146A rs2910164、NOTCH rs367398 SNPs和GSTM1缺失与运动功能和上肢功能评分相关,BDNF rs6265经调整后与肺功能评分相关。这些发现强调了氧化应激、炎症过程和神经发育途径中的遗传变异在阐明 SMA 复杂病程方面的潜力。对这些途径的进一步探索为开发针对 SMA 患者的个性化治疗策略提供了一条前景广阔的途径。
{"title":"Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy.","authors":"Maruša Barbo, Blaž Koritnik, Lea Leonardis, Tanja Blagus, Vita Dolžan, Metka Ravnik-Glavač","doi":"10.1007/s10571-024-01508-y","DOIUrl":"10.1007/s10571-024-01508-y","url":null,"abstract":"<p><p>The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"71"},"PeriodicalIF":3.6,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin Mitigates Trimethyltin-Induced Cognition Impairment and Hippocampal Neurodegeneration. 二甲双胍可减轻三甲基锡诱导的认知障碍和海马神经变性
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1007/s10571-024-01502-4
Mahdieh Taheri, Mehrdad Roghani, Reza Sedaghat

The neurotoxicant trimethyltin (TMT) triggers cognitive impairment and hippocampal neurodegeneration. TMT is a useful research tool for the study of Alzheimer's disease (AD) pathogenesis and treatment. Although the antidiabetic agent metformin has shown promising neuroprotective effects, however, its precise modes of action in neurodegenerative disorders need to be further elucidated. In this study, we investigated whether metformin can mitigate TMT cognition impairment and hippocampal neurodegeneration. To induce an AD-like phenotype, TMT was injected i.p. (8 mg/kg) and metformin was administered daily p.o. for 3 weeks at 200 mg/kg. Our results showed that metformin administration to the TMT group mitigated learning and memory impairment in Barnes maze, novel object recognition (NOR) task, and Y maze, attenuated hippocampal oxidative, inflammatory, and cell death/pyroptotic factors, and also reversed neurodegeneration-related proteins such as presenilin 1 and p-Tau. Hippocampal level of AMP-activated protein kinase (AMPK) as a key regulator of energy homeostasis was also improved following metformin treatment. Additionally, metformin reduced hippocampal acetylcholinesterase (AChE) activity, glial fibrillary acidic protein (GFAP)-positive reactivity, and prevented the loss of CA1 pyramidal neurons. This study showed that metformin mitigated TMT-induced neurodegeneration and this may pave the way to develop new therapeutics to combat against cognitive deficits under neurotoxic conditions.

神经毒剂三甲基锡(TMT)会引发认知障碍和海马神经变性。三甲基锡是研究阿尔茨海默病(AD)发病机制和治疗方法的有用研究工具。尽管抗糖尿病药物二甲双胍已显示出良好的神经保护作用,但其在神经退行性疾病中的确切作用模式仍有待进一步阐明。在这项研究中,我们探讨了二甲双胍是否能减轻TMT认知障碍和海马神经退行性变。为了诱导类似于AD的表型,我们对TMT进行了静脉注射(8毫克/千克),并连续3周每天口服二甲双胍200毫克/千克。结果表明,二甲双胍可减轻TMT组在巴恩斯迷宫、新物体识别(NOR)任务和Y迷宫中的学习和记忆损伤,减轻海马氧化、炎症和细胞死亡/凋亡因子,还可逆转神经退行性变相关蛋白,如presenilin 1和p-Tau。二甲双胍治疗后,作为能量平衡关键调节因子的AMP激活蛋白激酶(AMPK)的海马水平也得到了改善。此外,二甲双胍还降低了海马乙酰胆碱酯酶(AChE)活性和胶质纤维酸性蛋白(GFAP)阳性反应,并防止了CA1锥体神经元的丢失。这项研究表明,二甲双胍可减轻TMT诱导的神经退行性变,这可能为开发新的治疗药物以应对神经毒性条件下的认知障碍铺平道路。
{"title":"Metformin Mitigates Trimethyltin-Induced Cognition Impairment and Hippocampal Neurodegeneration.","authors":"Mahdieh Taheri, Mehrdad Roghani, Reza Sedaghat","doi":"10.1007/s10571-024-01502-4","DOIUrl":"https://doi.org/10.1007/s10571-024-01502-4","url":null,"abstract":"<p><p>The neurotoxicant trimethyltin (TMT) triggers cognitive impairment and hippocampal neurodegeneration. TMT is a useful research tool for the study of Alzheimer's disease (AD) pathogenesis and treatment. Although the antidiabetic agent metformin has shown promising neuroprotective effects, however, its precise modes of action in neurodegenerative disorders need to be further elucidated. In this study, we investigated whether metformin can mitigate TMT cognition impairment and hippocampal neurodegeneration. To induce an AD-like phenotype, TMT was injected i.p. (8 mg/kg) and metformin was administered daily p.o. for 3 weeks at 200 mg/kg. Our results showed that metformin administration to the TMT group mitigated learning and memory impairment in Barnes maze, novel object recognition (NOR) task, and Y maze, attenuated hippocampal oxidative, inflammatory, and cell death/pyroptotic factors, and also reversed neurodegeneration-related proteins such as presenilin 1 and p-Tau. Hippocampal level of AMP-activated protein kinase (AMPK) as a key regulator of energy homeostasis was also improved following metformin treatment. Additionally, metformin reduced hippocampal acetylcholinesterase (AChE) activity, glial fibrillary acidic protein (GFAP)-positive reactivity, and prevented the loss of CA1 pyramidal neurons. This study showed that metformin mitigated TMT-induced neurodegeneration and this may pave the way to develop new therapeutics to combat against cognitive deficits under neurotoxic conditions.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"70"},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Environmental Enrichment Modulate Epigenetic Processes in the Central Nervous System Under Adverse Environmental Conditions? A Systematic Review. 在不利的环境条件下,丰富的环境能否调节中枢神经系统的表观遗传过程?系统综述。
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1007/s10571-024-01506-0
Matheus Santos de Sousa Fernandes, Moara Rodrigues Costa, Georgian Badicu, Fatma Hilal Yagin, Gabriela Carvalho Jurema Santos, Jonathan Manoel da Costa, Raphael Fabrício de Souza, Claudia Jacques Lagranha, Luca Paolo Ardigò, Fabrício Oliveira Souto

The aim of this paper is to summarize the available evidence in the literature regarding the effects generated by exposure to an enriched environment (EE) on the modulation of epigenetic processes in the central nervous system under adverse environmental conditions. Searches were conducted in three databases: PubMed/Medline (1053 articles), Scopus (121 articles), and Embase (52 articles), which were subjected to eligibility criteria. Of the 1226 articles found, 173 duplicates were removed. After evaluating titles/abstracts, 904 studies were excluded, resulting in 49 articles, of which 14 were included in this systematic review. EE was performed using different inanimate objects. Adverse environmental conditions included CUMS, sepsis, nicotine exposure, PCP exposure, early stress, WAS, high fructose intake, TBI, and sevoflurane exposure. Regarding microRNA expression, after exposure to EE, an increase in the expression of miR-221 and miR-483 was observed in the prefrontal cortex, and a reduction in the expression of miR-92a-3p and miR-134 in the hippocampus. Regarding histone modifications, in the hippocampus, there was a reduction of HAT, HDAC/HDAC4, H3 (acetyl K14), H4 (acetyl K15), H3K4me3, K3k27me3, and HDAC2/3/5. In the cortex, there was a reduction of HDAC2, and in the prefrontal cortex, there was an increase in acetylated H3. Regarding DNA modifications, there was a reduction of DNMT in the hippocampus. This systematic review concludes that the benefits of EE on the brain and behavior of animals are directly related to different epigenetic mechanisms, reflecting in cell growth and neuroplasticity. EE may be a non-pharmacological and easy-to-apply alternative to prevent symptoms in disorders affecting brain tissue.

本文旨在总结现有文献中关于暴露于富集环境(EE)对不利环境条件下中枢神经系统表观遗传过程的调节作用的证据。我们在三个数据库中进行了搜索:PubMed/Medline(1053 篇文章)、Scopus(121 篇文章)和 Embase(52 篇文章)。在找到的 1226 篇文章中,删除了 173 篇重复文章。在对标题/摘要进行评估后,共排除了 904 篇研究,最终得出 49 篇文章,其中 14 篇被纳入本系统综述。使用不同的无生命物体进行 EE。不良环境条件包括CUMS、败血症、尼古丁暴露、五氯苯酚暴露、早期压力、WAS、高果糖摄入、创伤性脑损伤和七氟烷暴露。在微RNA表达方面,暴露于EE后,在前额叶皮层中观察到miR-221和miR-483的表达增加,而在海马中观察到miR-92a-3p和miR-134的表达减少。在组蛋白修饰方面,海马中的HAT、HDAC/HDAC4、H3(乙酰基K14)、H4(乙酰基K15)、H3K4me3、K3k27me3和HDAC2/3/5都有所减少。在大脑皮层,HDAC2 减少了,而在前额叶皮层,乙酰化的 H3 增加了。在 DNA 修饰方面,海马中的 DNMT 有所减少。本系统综述的结论是,EE 对动物大脑和行为的益处与不同的表观遗传机制直接相关,反映了细胞生长和神经可塑性。EE 可能是一种非药物且易于应用的替代方法,可用于预防影响脑组织的疾病症状。
{"title":"Can Environmental Enrichment Modulate Epigenetic Processes in the Central Nervous System Under Adverse Environmental Conditions? A Systematic Review.","authors":"Matheus Santos de Sousa Fernandes, Moara Rodrigues Costa, Georgian Badicu, Fatma Hilal Yagin, Gabriela Carvalho Jurema Santos, Jonathan Manoel da Costa, Raphael Fabrício de Souza, Claudia Jacques Lagranha, Luca Paolo Ardigò, Fabrício Oliveira Souto","doi":"10.1007/s10571-024-01506-0","DOIUrl":"10.1007/s10571-024-01506-0","url":null,"abstract":"<p><p>The aim of this paper is to summarize the available evidence in the literature regarding the effects generated by exposure to an enriched environment (EE) on the modulation of epigenetic processes in the central nervous system under adverse environmental conditions. Searches were conducted in three databases: PubMed/Medline (1053 articles), Scopus (121 articles), and Embase (52 articles), which were subjected to eligibility criteria. Of the 1226 articles found, 173 duplicates were removed. After evaluating titles/abstracts, 904 studies were excluded, resulting in 49 articles, of which 14 were included in this systematic review. EE was performed using different inanimate objects. Adverse environmental conditions included CUMS, sepsis, nicotine exposure, PCP exposure, early stress, WAS, high fructose intake, TBI, and sevoflurane exposure. Regarding microRNA expression, after exposure to EE, an increase in the expression of miR-221 and miR-483 was observed in the prefrontal cortex, and a reduction in the expression of miR-92a-3p and miR-134 in the hippocampus. Regarding histone modifications, in the hippocampus, there was a reduction of HAT, HDAC/HDAC4, H3 (acetyl K14), H4 (acetyl K15), H3K4me3, K3k27me3, and HDAC2/3/5. In the cortex, there was a reduction of HDAC2, and in the prefrontal cortex, there was an increase in acetylated H3. Regarding DNA modifications, there was a reduction of DNMT in the hippocampus. This systematic review concludes that the benefits of EE on the brain and behavior of animals are directly related to different epigenetic mechanisms, reflecting in cell growth and neuroplasticity. EE may be a non-pharmacological and easy-to-apply alternative to prevent symptoms in disorders affecting brain tissue.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"69"},"PeriodicalIF":3.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viruses and Mitochondrial Dysfunction in Neurodegeneration and Cognition: An Evolutionary Perspective. 神经退行性变和认知中的病毒和线粒体功能障碍:进化的视角》。
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-17 DOI: 10.1007/s10571-024-01503-3
George B Stefano, Simon Weissenberger, Radek Ptacek, Martin Anders, Jiri Raboch, Pascal Büttiker

Mitochondria, the cellular powerhouses with bacterial evolutionary origins, play a pivotal role in maintaining neuronal function and cognitive health. Several viruses have developed sophisticated mechanisms to target and disrupt mitochondrial function which contribute to cognitive decline and neurodegeneration. The interplay between viruses and mitochondria might be traced to their co-evolutionary history with bacteria and may reflect ancient interactions that have shaped modern mitochondrial biology.

线粒体是源自细菌进化的细胞动力室,在维持神经元功能和认知健康方面发挥着关键作用。一些病毒已经开发出针对和破坏线粒体功能的复杂机制,从而导致认知能力下降和神经退行性病变。病毒与线粒体之间的相互作用可追溯到它们与细菌共同进化的历史,并可能反映出塑造了现代线粒体生物学的古老相互作用。
{"title":"Viruses and Mitochondrial Dysfunction in Neurodegeneration and Cognition: An Evolutionary Perspective.","authors":"George B Stefano, Simon Weissenberger, Radek Ptacek, Martin Anders, Jiri Raboch, Pascal Büttiker","doi":"10.1007/s10571-024-01503-3","DOIUrl":"https://doi.org/10.1007/s10571-024-01503-3","url":null,"abstract":"<p><p>Mitochondria, the cellular powerhouses with bacterial evolutionary origins, play a pivotal role in maintaining neuronal function and cognitive health. Several viruses have developed sophisticated mechanisms to target and disrupt mitochondrial function which contribute to cognitive decline and neurodegeneration. The interplay between viruses and mitochondria might be traced to their co-evolutionary history with bacteria and may reflect ancient interactions that have shaped modern mitochondrial biology.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"68"},"PeriodicalIF":3.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Insights on Caloric Restriction Mimetics for Mitigating Brain Aging and Related Neurodegeneration. 关于模拟热量限制以缓解大脑衰老和相关神经退行性病变的临床见解》(Caloric Restriction Mimetics for Mitigating Brain Aging and Related Neurodegeneration)。
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2024-10-16 DOI: 10.1007/s10571-024-01493-2
Anchal Trisal, Abhishek Kumar Singh

Aging, an inevitable physiological process leading to a progressive decline in bodily functions, has been an abundantly researched domain with studies attempting to slow it down and reduce its debilitating effects. Investigations into the cellular and molecular pathways associated with aging have allowed the formulation of therapeutic strategies. Of these, caloric restriction (CR) has been implicated for its role in promoting healthy aging by modulating key molecular targets like Insulin/IGF-1, mTOR, and sirtuins. However, CR requires dedication and commitment to a strict regimen which poses a difficulty in maintaining consistency. To maneuver around cumbersome diets, Caloric Restriction Mimetics (CRMs) have emerged as promising alternatives by mimicking the beneficial effects of CR. This review elucidates the molecular foundations enabling CRMs like rapamycin, metformin, resveratrol, spermidine, and many more to function as suitable anti-aging molecules. Moreover, it explores clinical trials (retrieved from the clinicaltrials.gov database) aimed at demonstrating the efficacy of CRMs as effective candidates against age-related neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

衰老是一个不可避免的生理过程,会导致身体机能的逐渐衰退,人们在这一领域进行了大量的研究,试图延缓衰老并减少衰弱的影响。通过对与衰老相关的细胞和分子途径的研究,可以制定治疗策略。其中,热量限制(CR)通过调节胰岛素/IGF-1、mTOR 和 sirtuins 等关键分子靶点,在促进健康老化方面发挥了作用。然而,卡路里限制需要全身心地投入到严格的饮食方案中,这给保持一致性带来了困难。为了绕过繁琐的饮食习惯,热量限制模仿剂(CRMs)通过模仿热量限制的有益效果而成为一种有前途的替代品。这篇综述阐明了雷帕霉素、二甲双胍、白藜芦醇、亚精胺等 CRMs 作为合适的抗衰老分子的分子基础。此外,它还探讨了一些临床试验(从 clinicaltrials.gov 数据库中检索),这些试验旨在证明 CRMs 作为有效候选药物对阿尔茨海默病和帕金森病等与年龄有关的神经退行性疾病的疗效。
{"title":"Clinical Insights on Caloric Restriction Mimetics for Mitigating Brain Aging and Related Neurodegeneration.","authors":"Anchal Trisal, Abhishek Kumar Singh","doi":"10.1007/s10571-024-01493-2","DOIUrl":"https://doi.org/10.1007/s10571-024-01493-2","url":null,"abstract":"<p><p>Aging, an inevitable physiological process leading to a progressive decline in bodily functions, has been an abundantly researched domain with studies attempting to slow it down and reduce its debilitating effects. Investigations into the cellular and molecular pathways associated with aging have allowed the formulation of therapeutic strategies. Of these, caloric restriction (CR) has been implicated for its role in promoting healthy aging by modulating key molecular targets like Insulin/IGF-1, mTOR, and sirtuins. However, CR requires dedication and commitment to a strict regimen which poses a difficulty in maintaining consistency. To maneuver around cumbersome diets, Caloric Restriction Mimetics (CRMs) have emerged as promising alternatives by mimicking the beneficial effects of CR. This review elucidates the molecular foundations enabling CRMs like rapamycin, metformin, resveratrol, spermidine, and many more to function as suitable anti-aging molecules. Moreover, it explores clinical trials (retrieved from the clinicaltrials.gov database) aimed at demonstrating the efficacy of CRMs as effective candidates against age-related neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"67"},"PeriodicalIF":3.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and Molecular Neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1