Immunotherapies for the prevention and treatment of Staphylococcus aureus infections: updates and challenges.

IF 2.7 4区 医学 Q3 IMMUNOLOGY Pathogens and disease Pub Date : 2023-01-17 DOI:10.1093/femspd/ftad016
Pooi Yin Chung
{"title":"Immunotherapies for the prevention and treatment of Staphylococcus aureus infections: updates and challenges.","authors":"Pooi Yin Chung","doi":"10.1093/femspd/ftad016","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus is the leading cause of hospital-acquired infections and can cause a wide range of diseases from mild skin infections to invasive diseases including deep surgical site infections, life-threatening bacteremia, and sepsis. This pathogen remains a challenge to manage due to its ability to rapidly develop resistance to antibiotic treatment and to form biofilms. Despite the current infection control measures which involve mainly antibiotics, the burden of infection remains high. The 'omics' approaches have not led to the discovery of novel antibacterials at a pace sufficient to cope with the emergence of multidrug-resistant and biofilm-forming S. aureus, Hence, new strategies for anti-infective therapies need to be explored urgently. One promising strategy is harnessing the immune response to enhance the protective antimicrobial immunity in the host. This review discusses the potential of monoclonal antibodies and vaccines as alternatives to treat and manage infections caused by planktonic and biofilms of S. aureus.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftad016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Staphylococcus aureus is the leading cause of hospital-acquired infections and can cause a wide range of diseases from mild skin infections to invasive diseases including deep surgical site infections, life-threatening bacteremia, and sepsis. This pathogen remains a challenge to manage due to its ability to rapidly develop resistance to antibiotic treatment and to form biofilms. Despite the current infection control measures which involve mainly antibiotics, the burden of infection remains high. The 'omics' approaches have not led to the discovery of novel antibacterials at a pace sufficient to cope with the emergence of multidrug-resistant and biofilm-forming S. aureus, Hence, new strategies for anti-infective therapies need to be explored urgently. One promising strategy is harnessing the immune response to enhance the protective antimicrobial immunity in the host. This review discusses the potential of monoclonal antibodies and vaccines as alternatives to treat and manage infections caused by planktonic and biofilms of S. aureus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预防和治疗金黄色葡萄球菌感染的免疫疗法:最新进展和挑战。
金黄色葡萄球菌是医院获得性感染的主要原因,可引起多种疾病,从轻微的皮肤感染到侵袭性疾病,包括深部手术部位感染、危及生命的菌血症和败血症。由于这种病原体能够迅速产生对抗生素治疗的耐药性并形成生物膜,因此管理它仍然是一项挑战。尽管目前的感染控制措施主要涉及抗生素,但感染负担仍然很高。“组学”方法并没有以足够的速度发现新的抗菌药物,以应对多重耐药和形成生物膜的金黄色葡萄球菌的出现,因此,迫切需要探索新的抗感染治疗策略。一种有希望的策略是利用免疫反应来增强宿主的保护性抗微生物免疫。这篇综述讨论了单克隆抗体和疫苗作为治疗和管理由金黄色葡萄球菌浮游和生物膜引起的感染的替代方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
期刊最新文献
Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. CRISPR/Cas9-Edited Duck Enteritis Virus expressing Pmp17G of Chlamydia psittaci Induced Protective Immunity in Ducking. Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or D-mannose. Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in acute phase of COVID-19, convalescents and pre-pandemic individuals. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1