Application of machine learning approach in emergency department to support clinical decision making for SARS-CoV-2 infected patients.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2023-03-07 eCollection Date: 2023-06-01 DOI:10.1515/jib-2022-0047
Nicolò Casano, Silvano Junior Santini, Pierpaolo Vittorini, Gaia Sinatti, Paolo Carducci, Claudio Maria Mastroianni, Maria Rosa Ciardi, Patrizia Pasculli, Emiliano Petrucci, Franco Marinangeli, Clara Balsano
{"title":"Application of machine learning approach in emergency department to support clinical decision making for SARS-CoV-2 infected patients.","authors":"Nicolò Casano,&nbsp;Silvano Junior Santini,&nbsp;Pierpaolo Vittorini,&nbsp;Gaia Sinatti,&nbsp;Paolo Carducci,&nbsp;Claudio Maria Mastroianni,&nbsp;Maria Rosa Ciardi,&nbsp;Patrizia Pasculli,&nbsp;Emiliano Petrucci,&nbsp;Franco Marinangeli,&nbsp;Clara Balsano","doi":"10.1515/jib-2022-0047","DOIUrl":null,"url":null,"abstract":"<p><p>To support physicians in clinical decision process on patients affected by Coronavirus Disease 2019 (COVID-19) in areas with a low vaccination rate, we devised and evaluated the performances of several machine learning (ML) classifiers fed with readily available clinical and laboratory data. Our observational retrospective study collected data from a cohort of 779 COVID-19 patients presenting to three hospitals of the Lazio-Abruzzo area (Italy). Based on a different selection of clinical and respiratory (ROX index and PaO2/FiO2 ratio) variables, we devised an AI-driven tool to predict safe discharge from ED, disease severity and mortality during hospitalization. To predict safe discharge our best classifier is an RF integrated with ROX index that reached AUC of 0.96. To predict disease severity the best classifier was an RF integrated with ROX index that reached an AUC of 0.91. For mortality prediction the best classifier was an RF integrated with ROX index, that reached an AUC of 0.91. The results obtained thanks to our algorithms are consistent with the scientific literature an accomplish significant performances to forecast safe discharge from ED and severe clinical course of COVID-19.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561065/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2022-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

To support physicians in clinical decision process on patients affected by Coronavirus Disease 2019 (COVID-19) in areas with a low vaccination rate, we devised and evaluated the performances of several machine learning (ML) classifiers fed with readily available clinical and laboratory data. Our observational retrospective study collected data from a cohort of 779 COVID-19 patients presenting to three hospitals of the Lazio-Abruzzo area (Italy). Based on a different selection of clinical and respiratory (ROX index and PaO2/FiO2 ratio) variables, we devised an AI-driven tool to predict safe discharge from ED, disease severity and mortality during hospitalization. To predict safe discharge our best classifier is an RF integrated with ROX index that reached AUC of 0.96. To predict disease severity the best classifier was an RF integrated with ROX index that reached an AUC of 0.91. For mortality prediction the best classifier was an RF integrated with ROX index, that reached an AUC of 0.91. The results obtained thanks to our algorithms are consistent with the scientific literature an accomplish significant performances to forecast safe discharge from ED and severe clinical course of COVID-19.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在急诊科应用机器学习方法支持严重急性呼吸系统综合征冠状病毒2型感染患者的临床决策。
为了支持医生在疫苗接种率低的地区对2019冠状病毒病(新冠肺炎)患者进行临床决策,我们设计并评估了几个机器学习(ML)分类器的性能,这些分类器提供了现成的临床和实验室数据。我们的观察性回顾性研究收集了来自意大利拉齐奥-布鲁佐地区三家医院的779名新冠肺炎患者的数据。基于临床和呼吸(ROX指数和PaO2/FiO2比率)变量的不同选择,我们设计了一种人工智能驱动的工具来预测ED的安全出院、疾病严重程度和住院期间的死亡率。为了预测安全出院,我们最好的分类器是RF与ROX指数的积分,AUC达到0.96。为了预测疾病的严重程度,最好的分类器是RF与ROX指数的结合,其AUC达到0.91。对于死亡率预测,最好的分类器是RF与ROX指数的结合,其AUC达到0.91。由于我们的算法获得的结果与科学文献一致,在预测ED安全出院和新冠肺炎严重临床过程方面取得了显著成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
A roadmap for a middleware as a federation service for integrative data retrieval of agricultural data. International symposium on integrative bioinformatics 2024 - editorial. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1