首页 > 最新文献

Journal of Integrative Bioinformatics最新文献

英文 中文
MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. MCMVDRP:用于癌症药物反应预测的多通道多视角深度学习框架。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-09-02 DOI: 10.1515/jib-2024-0026
Xiangyu Li, Xiumin Shi, Yuxuan Li, Lu Wang

Drug therapy remains the primary approach to treating tumours. Variability among cancer patients, including variations in genomic profiles, often results in divergent therapeutic responses to analogous anti-cancer drug treatments within the same cohort of cancer patients. Hence, predicting the drug response by analysing the genomic profile characteristics of individual patients holds significant research importance. With the notable progress in machine learning and deep learning, many effective methods have emerged for predicting drug responses utilizing features from both drugs and cell lines. However, these methods are inadequate in capturing a sufficient number of features inherent to drugs. Consequently, we propose a representational approach for drugs that incorporates three distinct types of features: the molecular graph, the SMILE strings, and the molecular fingerprints. In this study, a novel deep learning model, named MCMVDRP, is introduced for the prediction of cancer drug responses. In our proposed model, an amalgamation of these extracted features is performed, followed by the utilization of fully connected layers to predict the drug response based on the IC50 values. Experimental results demonstrate that the presented model outperforms current state-of-the-art models in performance.

药物治疗仍然是治疗肿瘤的主要方法。癌症患者之间的差异,包括基因组特征的差异,往往导致同一批癌症患者对类似的抗癌药物治疗产生不同的治疗反应。因此,通过分析个体患者的基因组特征来预测药物反应具有重要的研究意义。随着机器学习和深度学习的显著进步,出现了许多利用药物和细胞系特征预测药物反应的有效方法。然而,这些方法不足以捕捉到足够数量的药物固有特征。因此,我们提出了一种药物表征方法,其中包含三种不同类型的特征:分子图、SMILE 字符串和分子指纹。在这项研究中,我们引入了一种名为 MCMVDRP 的新型深度学习模型,用于预测癌症药物反应。在我们提出的模型中,首先对这些提取的特征进行合并,然后利用全连接层根据 IC50 值预测药物反应。实验结果表明,所提出的模型在性能上优于目前最先进的模型。
{"title":"MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction.","authors":"Xiangyu Li, Xiumin Shi, Yuxuan Li, Lu Wang","doi":"10.1515/jib-2024-0026","DOIUrl":"https://doi.org/10.1515/jib-2024-0026","url":null,"abstract":"<p><p>Drug therapy remains the primary approach to treating tumours. Variability among cancer patients, including variations in genomic profiles, often results in divergent therapeutic responses to analogous anti-cancer drug treatments within the same cohort of cancer patients. Hence, predicting the drug response by analysing the genomic profile characteristics of individual patients holds significant research importance. With the notable progress in machine learning and deep learning, many effective methods have emerged for predicting drug responses utilizing features from both drugs and cell lines. However, these methods are inadequate in capturing a sufficient number of features inherent to drugs. Consequently, we propose a representational approach for drugs that incorporates three distinct types of features: the molecular graph, the SMILE strings, and the molecular fingerprints. In this study, a novel deep learning model, named MCMVDRP, is introduced for the prediction of cancer drug responses. In our proposed model, an amalgamation of these extracted features is performed, followed by the utilization of fully connected layers to predict the drug response based on the IC50 values. Experimental results demonstrate that the presented model outperforms current state-of-the-art models in performance.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leonhard Med, a trusted research environment for processing sensitive research data. Leonhard Med,一个用于处理敏感研究数据的可信研究环境。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-02 DOI: 10.1515/jib-2024-0021
Michal J Okoniewski, Anna Wiegand, Diana Coman Schmid, Christian Bolliger, Cristian Bovino, Mattia Belluco, Thomas Wüst, Olivier Byrde, Sergio Maffioletti, Bernd Rinn

This paper provides an overview of the development and operation of the Leonhard Med Trusted Research Environment (TRE) at ETH Zurich. Leonhard Med gives scientific researchers the ability to securely work on sensitive research data. We give an overview of the user perspective, the legal framework for processing sensitive data, design history, current status, and operations. Leonhard Med is an efficient, highly secure Trusted Research Environment for data processing, hosted at ETH Zurich and operated by the Scientific IT Services (SIS) of ETH. It provides a full stack of security controls that allow researchers to store, access, manage, and process sensitive data according to Swiss legislation and ETH Zurich Data Protection policies. In addition, Leonhard Med fulfills the BioMedIT Information Security Policies and is compatible with international data protection laws and therefore can be utilized within the scope of national and international collaboration research projects. Initially designed as a "bare-metal" High-Performance Computing (HPC) platform to achieve maximum performance, Leonhard Med was later re-designed as a virtualized, private cloud platform to offer more flexibility to its customers. Sensitive data can be analyzed in secure, segregated spaces called tenants. Technical and Organizational Measures (TOMs) are in place to assure the confidentiality, integrity, and availability of sensitive data. At the same time, Leonhard Med ensures broad access to cutting-edge research software, especially for the analysis of human -omics data and other personalized health applications.

本文概述了苏黎世联邦理工学院 Leonhard Med 可信研究环境(TRE)的开发和运行情况。Leonhard Med 为科研人员提供了安全处理敏感研究数据的能力。我们概述了用户视角、处理敏感数据的法律框架、设计历史、现状和运行情况。Leonhard Med 是一个用于数据处理的高效、高度安全的可信研究环境,由苏黎世联邦理工学院托管,并由苏黎世联邦理工学院的科学信息技术服务部(SIS)负责运营。它提供一整套安全控制措施,允许研究人员根据瑞士法律和苏黎世联邦理工学院数据保护政策存储、访问、管理和处理敏感数据。此外,Leonhard Med 还符合 BioMedIT 信息安全政策,并与国际数据保护法兼容,因此可在国家和国际合作研究项目范围内使用。Leonhard Med 最初设计为 "裸机 "高性能计算(HPC)平台,以实现最高性能,后来重新设计为虚拟化私有云平台,为客户提供更大的灵活性。敏感数据可在被称为租户的安全隔离空间内进行分析。技术和组织措施(TOM)确保敏感数据的保密性、完整性和可用性。与此同时,Leonhard Med 还确保广泛使用最先进的研究软件,尤其是用于分析人类组学数据和其他个性化健康应用的软件。
{"title":"<i>Leonhard Med</i>, a trusted research environment for processing sensitive research data.","authors":"Michal J Okoniewski, Anna Wiegand, Diana Coman Schmid, Christian Bolliger, Cristian Bovino, Mattia Belluco, Thomas Wüst, Olivier Byrde, Sergio Maffioletti, Bernd Rinn","doi":"10.1515/jib-2024-0021","DOIUrl":"https://doi.org/10.1515/jib-2024-0021","url":null,"abstract":"<p><p>This paper provides an overview of the development and operation of the <i>Leonhard Med</i> Trusted Research Environment (TRE) at ETH Zurich. <i>Leonhard Med</i> gives scientific researchers the ability to securely work on sensitive research data. We give an overview of the user perspective, the legal framework for processing sensitive data, design history, current status, and operations. <i>Leonhard Med</i> is an efficient, highly secure Trusted Research Environment for data processing, hosted at ETH Zurich and operated by the Scientific IT Services (SIS) of ETH. It provides a full stack of security controls that allow researchers to store, access, manage, and process sensitive data according to Swiss legislation and ETH Zurich Data Protection policies. In addition, <i>Leonhard Med</i> fulfills the BioMedIT Information Security Policies and is compatible with international data protection laws and therefore can be utilized within the scope of national and international collaboration research projects. Initially designed as a \"bare-metal\" High-Performance Computing (HPC) platform to achieve maximum performance, <i>Leonhard Med</i> was later re-designed as a virtualized, private cloud platform to offer more flexibility to its customers. Sensitive data can be analyzed in secure, segregated spaces called tenants. Technical and Organizational Measures (TOMs) are in place to assure the confidentiality, integrity, and availability of sensitive data. At the same time, <i>Leonhard Med</i> ensures broad access to cutting-edge research software, especially for the analysis of human -omics data and other personalized health applications.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework. 探索身临其境环境中的动物行为多层网络--一个概念框架。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-24 DOI: 10.1515/jib-2024-0022
Stefan Paul Feyer, Bruno Pinaud, Karsten Klein, Etienne Lein, Falk Schreiber

Animal behaviour is often modelled as networks, where, for example, the nodes are individuals of a group and the edges represent behaviour within this group. Different types of behaviours or behavioural categories are then modelled as different yet connected networks which form a multilayer network. Recent developments show the potential and benefit of multilayer networks for animal behaviour research as well as the potential benefit of stereoscopic 3D immersive environments for the interactive visualisation, exploration and analysis of animal behaviour multilayer networks. However, so far animal behaviour research is mainly supported by libraries or software on 2D desktops. Here, we explore the domain-specific requirements for (stereoscopic) 3D environments. Based on those requirements, we provide a proof of concept to visualise, explore and analyse animal behaviour multilayer networks in immersive environments.

动物行为通常被模拟为网络,例如,节点是一个群体中的个体,边代表这个群体中的行为。然后,不同类型的行为或行为类别被模拟为不同但相互连接的网络,形成一个多层网络。最近的发展显示了多层网络在动物行为研究方面的潜力和益处,以及立体三维沉浸式环境在交互式可视化、探索和分析动物行为多层网络方面的潜在益处。然而,迄今为止,动物行为研究主要由二维桌面上的图书馆或软件提供支持。在此,我们探讨了特定领域对(立体)三维环境的要求。基于这些要求,我们提供了在沉浸式环境中可视化、探索和分析动物行为多层网络的概念验证。
{"title":"Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework.","authors":"Stefan Paul Feyer, Bruno Pinaud, Karsten Klein, Etienne Lein, Falk Schreiber","doi":"10.1515/jib-2024-0022","DOIUrl":"https://doi.org/10.1515/jib-2024-0022","url":null,"abstract":"<p><p>Animal behaviour is often modelled as networks, where, for example, the nodes are individuals of a group and the edges represent behaviour within this group. Different types of behaviours or behavioural categories are then modelled as different yet connected networks which form a multilayer network. Recent developments show the potential and benefit of multilayer networks for animal behaviour research as well as the potential benefit of stereoscopic 3D immersive environments for the interactive visualisation, exploration and analysis of animal behaviour multilayer networks. However, so far animal behaviour research is mainly supported by libraries or software on 2D desktops. Here, we explore the domain-specific requirements for (stereoscopic) 3D environments. Based on those requirements, we provide a proof of concept to visualise, explore and analyse animal behaviour multilayer networks in immersive environments.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information. 利用系统发生树折叠器(PTC)推断昆虫抗坏血酸合成途径的进化,PTC 是一种利用分类信息自动折叠系统发生树的工具。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-24 eCollection Date: 2024-06-01 DOI: 10.1515/jib-2023-0051
Daniel Glez-Peña, Hugo López-Fernández, Pedro Duque, Cristina P Vieira, Jorge Vieira

When inferring the evolution of a gene/gene family, it is advisable to use all available coding sequences (CDS) from as many species genomes as possible in order to infer and date all gene duplications and losses. Nowadays, this means using hundreds or even thousands of CDSs, which makes the inferred phylogenetic trees difficult to visualize and interpret. Therefore, it is useful to have an automated way of collapsing large phylogenetic trees according to a taxonomic term decided by the user (family, class, or order, for instance), in order to highlight the minimal set of sequences that should be used to recapitulate the full history of the gene/gene family being studied at that taxonomic level, that can be refined using additional software. Here we present the Phylogenetic Tree Collapser (PTC) program (https://github.com/pegi3s/phylogenetic-tree-collapser), a flexible tool for automated tree collapsing using taxonomic information, that can be easily used by researchers without a background in informatics, since it only requires the installation of Docker, Podman or Singularity. The utility of PTC is demonstrated by addressing the evolution of the ascorbic acid synthesis pathway in insects. A Docker image is available at Docker Hub (https://hub.docker.com/r/pegi3s/phylogenetic-tree-collapser) with PTC installed and ready-to-run.

在推断基因/基因家族的进化时,最好尽可能多地使用物种基因组中所有可用的编码序列(CDS),以便推断所有基因的复制和丢失并确定其日期。如今,这意味着要使用数百甚至数千个 CDS,这使得推断出的系统发生树难以可视化和解释。因此,根据用户决定的分类学术语(如科、类或目)自动折叠大型系统发生树是非常有用的,这样可以突出最小的序列集,用于在该分类学水平上再现所研究基因/基因家族的全部历史,并可使用其他软件进行完善。在此,我们介绍系统发生树折叠程序(PTC)(https://github.com/pegi3s/phylogenetic-tree-collapser),这是一种利用分类信息自动折叠树的灵活工具,没有信息学背景的研究人员也能轻松使用,因为它只需要安装 Docker、Podman 或 Singularity。通过研究昆虫抗坏血酸合成途径的进化,PTC 的实用性得到了证明。Docker Hub (https://hub.docker.com/r/pegi3s/phylogenetic-tree-collapser) 上有一个 Docker 镜像,已安装 PTC 并可随时运行。
{"title":"Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information.","authors":"Daniel Glez-Peña, Hugo López-Fernández, Pedro Duque, Cristina P Vieira, Jorge Vieira","doi":"10.1515/jib-2023-0051","DOIUrl":"10.1515/jib-2023-0051","url":null,"abstract":"<p><p>When inferring the evolution of a gene/gene family, it is advisable to use all available coding sequences (CDS) from as many species genomes as possible in order to infer and date all gene duplications and losses. Nowadays, this means using hundreds or even thousands of CDSs, which makes the inferred phylogenetic trees difficult to visualize and interpret. Therefore, it is useful to have an automated way of collapsing large phylogenetic trees according to a taxonomic term decided by the user (family, class, or order, for instance), in order to highlight the minimal set of sequences that should be used to recapitulate the full history of the gene/gene family being studied at that taxonomic level, that can be refined using additional software. Here we present the Phylogenetic Tree Collapser (PTC) program (https://github.com/pegi3s/phylogenetic-tree-collapser), a flexible tool for automated tree collapsing using taxonomic information, that can be easily used by researchers without a background in informatics, since it only requires the installation of Docker, Podman or Singularity. The utility of PTC is demonstrated by addressing the evolution of the ascorbic acid synthesis pathway in insects. A Docker image is available at Docker Hub (https://hub.docker.com/r/pegi3s/phylogenetic-tree-collapser) with PTC installed and ready-to-run.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024. 系统和合成生物学标准规范:2024 年的现状、发展和工具。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-22 eCollection Date: 2024-03-01 DOI: 10.1515/jib-2024-0015
Martin Golebiewski, Gary Bader, Padraig Gleeson, Thomas E Gorochowski, Sarah M Keating, Matthias König, Chris J Myers, David P Nickerson, Björn Sommer, Dagmar Waltemath, Falk Schreiber
{"title":"Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024.","authors":"Martin Golebiewski, Gary Bader, Padraig Gleeson, Thomas E Gorochowski, Sarah M Keating, Matthias König, Chris J Myers, David P Nickerson, Björn Sommer, Dagmar Waltemath, Falk Schreiber","doi":"10.1515/jib-2024-0015","DOIUrl":"10.1515/jib-2024-0015","url":null,"abstract":"","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction. 检测病例对照队列中的异常值,改进深度学习网络对精神分裂症的预测。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-15 eCollection Date: 2024-06-01 DOI: 10.1515/jib-2023-0042
Daniel Martins, Maryam Abbasi, Conceição Egas, Joel P Arrais

This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based on reports of non-negligible misdiagnosis rates for SCZ, case-control cohorts may contain outlying genetic profiles, hindering compelling performances of classification models. The research employed a case-control dataset sourced from the Swedish populace. A gene-annotation-based DL architecture was developed and employed in two stages. First, the model was trained on the entire dataset to highlight differences between cases and controls. Then, samples likely to be misclassified were excluded, and the model was retrained on the refined dataset for performance evaluation. The results indicate that SCZ prevalence and misdiagnosis rates can affect case-control cohorts, potentially compromising future studies reliant on such datasets. However, by detecting and filtering outliers, the study demonstrates the feasibility of adapting DL methodologies to large-scale biological problems, producing results more aligned with existing heritability estimates for SCZ. This approach not only advances the comprehension of the genetic background of SCZ but also opens doors for adapting DL techniques in complex research for precision medicine in mental health.

精神分裂症是一种病因不确定的复杂精神障碍,本研究深入探讨了精神分裂症错综复杂的遗传和临床问题。深度学习(DL)有望通过分析大型基因组数据集来发现新的风险因素。然而,根据有关精神分裂症不可忽视的误诊率的报道,病例对照队列可能包含离谱的遗传特征,从而阻碍了分类模型令人信服的性能。研究采用的病例对照数据集来自瑞典人群。研究分两个阶段开发并使用了基于基因注释的 DL 架构。首先,对整个数据集进行模型训练,以突出病例与对照之间的差异。然后,排除可能被错误分类的样本,并在改进后的数据集上重新训练模型,以进行性能评估。结果表明,SCZ 的患病率和误诊率会影响病例对照队列,可能会影响未来依赖此类数据集进行的研究。不过,通过检测和过滤异常值,该研究证明了将 DL 方法应用于大规模生物问题的可行性,得出的结果与 SCZ 的现有遗传率估计更加一致。这种方法不仅促进了对 SCZ 遗传背景的理解,还为在复杂研究中应用 DL 技术以实现心理健康的精准医疗打开了大门。
{"title":"Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction.","authors":"Daniel Martins, Maryam Abbasi, Conceição Egas, Joel P Arrais","doi":"10.1515/jib-2023-0042","DOIUrl":"10.1515/jib-2023-0042","url":null,"abstract":"<p><p>This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based on reports of non-negligible misdiagnosis rates for SCZ, case-control cohorts may contain outlying genetic profiles, hindering compelling performances of classification models. The research employed a case-control dataset sourced from the Swedish populace. A gene-annotation-based DL architecture was developed and employed in two stages. First, the model was trained on the entire dataset to highlight differences between cases and controls. Then, samples likely to be misclassified were excluded, and the model was retrained on the refined dataset for performance evaluation. The results indicate that SCZ prevalence and misdiagnosis rates can affect case-control cohorts, potentially compromising future studies reliant on such datasets. However, by detecting and filtering outliers, the study demonstrates the feasibility of adapting DL methodologies to large-scale biological problems, producing results more aligned with existing heritability estimates for SCZ. This approach not only advances the comprehension of the genetic background of SCZ but also opens doors for adapting DL techniques in complex research for precision medicine in mental health.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layout of anatomical structures and blood vessels based on the foundational model of anatomy. 根据解剖学基础模型,布局解剖结构和血管。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-12 DOI: 10.1515/jib-2024-0023
Niklas Gröne, Benjamin Grüneisen, Karsten Klein, Bernard de Bono, Tobias Czauderna, Falk Schreiber

We present a method for the layout of anatomical structures and blood vessels based on information from the Foundational Model of Anatomy (FMA). Our approach integrates a novel vascular layout into the hierarchical treemap representation of anatomy as used in ApiNATOMY. Our method aims to improve the comprehension of complex anatomical and vascular data by providing readable visual representations. The effectiveness of our method is demonstrated through a prototype developed in VANTED, showing potential for application in research, education, and clinical settings.

我们介绍了一种基于解剖学基础模型(FMA)信息的解剖结构和血管布局方法。我们的方法将新颖的血管布局整合到 ApiNATOMY 中使用的解剖分层树状图中。我们的方法旨在通过提供可读的可视化表示,提高对复杂解剖和血管数据的理解能力。我们的方法通过在 VANTED 中开发的原型展示了其有效性,显示了在研究、教育和临床环境中的应用潜力。
{"title":"Layout of anatomical structures and blood vessels based on the foundational model of anatomy.","authors":"Niklas Gröne, Benjamin Grüneisen, Karsten Klein, Bernard de Bono, Tobias Czauderna, Falk Schreiber","doi":"10.1515/jib-2024-0023","DOIUrl":"https://doi.org/10.1515/jib-2024-0023","url":null,"abstract":"<p><p>We present a method for the layout of anatomical structures and blood vessels based on information from the Foundational Model of Anatomy (FMA). Our approach integrates a novel vascular layout into the hierarchical treemap representation of anatomy as used in ApiNATOMY. Our method aims to improve the comprehension of complex anatomical and vascular data by providing readable visual representations. The effectiveness of our method is demonstrated through a prototype developed in VANTED, showing potential for application in research, education, and clinical settings.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformers meets neoantigen detection: a systematic literature review. 变形金刚与新抗原检测:系统文献综述。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-04 eCollection Date: 2024-06-01 DOI: 10.1515/jib-2023-0043
Vicente Machaca, Valeria Goyzueta, María Graciel Cruz, Erika Sejje, Luz Marina Pilco, Julio López, Yván Túpac

Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.

癌症免疫学为放疗和化疗等传统癌症疗法提供了一种新的替代疗法。其中一个值得注意的替代方法是开发基于癌症新抗原的个性化疫苗。此外,变形金刚被认为是人工智能的革命性发展,对自然语言处理(NLP)任务产生了重大影响,近年来已被用于蛋白质组学研究。在此背景下,我们进行了一次系统的文献综述,以调查变形金刚如何应用于新抗原检测过程的各个阶段。此外,我们还绘制了当前的流程图,并研究了涉及癌症疫苗的临床试验结果。
{"title":"Transformers meets neoantigen detection: a systematic literature review.","authors":"Vicente Machaca, Valeria Goyzueta, María Graciel Cruz, Erika Sejje, Luz Marina Pilco, Julio López, Yván Túpac","doi":"10.1515/jib-2023-0043","DOIUrl":"10.1515/jib-2023-0043","url":null,"abstract":"<p><p>Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MakeSBML: a tool for converting between Antimony and SBML. MakeSBML:在 Antimony 和 SBML 之间进行转换的工具。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-06-11 eCollection Date: 2024-03-01 DOI: 10.1515/jib-2024-0002
Bartholomew E Jardine, Lucian P Smith, Herbert M Sauro

We describe a web-based tool, MakeSBML (https://sys-bio.github.io/makesbml/), that provides an installation-free application for creating, editing, and searching the Biomodels repository for SBML-based models. MakeSBML is a client-based web application that translates models expressed in human-readable Antimony to the System Biology Markup Language (SBML) and vice-versa. Since MakeSBML is a web-based application it requires no installation on the user's part. Currently, MakeSBML is hosted on a GitHub page where the client-based design makes it trivial to move to other hosts. This model for software deployment also reduces maintenance costs since an active server is not required. The SBML modeling language is often used in systems biology research to describe complex biochemical networks and makes reproducing models much easier. However, SBML is designed to be computer-readable, not human-readable. We therefore employ the human-readable Antimony language to make it easy to create and edit SBML models.

我们描述了一个基于网络的工具 MakeSBML (https://sys-bio.github.io/makesbml/),它提供了一个免安装的应用程序,用于创建、编辑和搜索生物模型库中基于 SBML 的模型。MakeSBML 是一个基于客户端的网络应用程序,可将以人类可读的锑表示的模型转换为系统生物学标记语言(SBML),反之亦然。由于 MakeSBML 是基于网络的应用程序,用户无需安装。目前,MakeSBML 托管在 GitHub 页面上,基于客户端的设计使其可以轻松转移到其他主机上。这种软件部署模式还能降低维护成本,因为不需要活动服务器。SBML 建模语言常用于系统生物学研究,用于描述复杂的生化网络,使模型的复制更加容易。然而,SBML 的设计是计算机可读的,而不是人类可读的。因此,我们采用了人类可读的锑语言,使创建和编辑 SBML 模型变得更加容易。
{"title":"MakeSBML: a tool for converting between Antimony and SBML.","authors":"Bartholomew E Jardine, Lucian P Smith, Herbert M Sauro","doi":"10.1515/jib-2024-0002","DOIUrl":"10.1515/jib-2024-0002","url":null,"abstract":"<p><p>We describe a web-based tool, MakeSBML (https://sys-bio.github.io/makesbml/), that provides an installation-free application for creating, editing, and searching the Biomodels repository for SBML-based models. MakeSBML is a client-based web application that translates models expressed in human-readable Antimony to the System Biology Markup Language (SBML) and vice-versa. Since MakeSBML is a web-based application it requires no installation on the user's part. Currently, MakeSBML is hosted on a GitHub page where the client-based design makes it trivial to move to other hosts. This model for software deployment also reduces maintenance costs since an active server is not required. The SBML modeling language is often used in systems biology research to describe complex biochemical networks and makes reproducing models much easier. However, SBML is designed to be computer-readable, not human-readable. We therefore employ the human-readable Antimony language to make it easy to create and edit SBML models.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SBMLToolkit.jl: a Julia package for importing SBML into the SciML ecosystem. SBMLToolkit.jl:将 SBML 导入 SciML 生态系统的 Julia 软件包。
IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-28 eCollection Date: 2024-03-01 DOI: 10.1515/jib-2024-0003
Paul F Lang, Anand Jain, Christopher Rackauckas

Julia is a general purpose programming language that was designed for simplifying and accelerating numerical analysis and computational science. In particular the Scientific Machine Learning (SciML) ecosystem of Julia packages includes frameworks for high-performance symbolic-numeric computations. It allows users to automatically enhance high-level descriptions of their models with symbolic preprocessing and automatic sparsification and parallelization of computations. This enables performant solution of differential equations, efficient parameter estimation and methodologies for automated model discovery with neural differential equations and sparse identification of nonlinear dynamics. To give the systems biology community easy access to SciML, we developed SBMLToolkit.jl. SBMLToolkit.jl imports dynamic SBML models into the SciML ecosystem to accelerate model simulation and fitting of kinetic parameters. By providing computational systems biologists with easy access to the open-source Julia ecosystevnm, we hope to catalyze the development of further Julia tools in this domain and the growth of the Julia bioscience community. SBMLToolkit.jl is freely available under the MIT license. The source code is available at https://github.com/SciML/SBMLToolkit.jl.

Julia 是一种通用编程语言,旨在简化和加速数值分析和计算科学。特别是 Julia 软件包的科学机器学习(SciML)生态系统包括高性能符号数值计算框架。它允许用户通过符号预处理、自动稀疏化和并行化计算,自动增强模型的高级描述。这样就能实现微分方程的高效求解、高效参数估计以及利用神经微分方程和非线性动力学稀疏识别自动发现模型的方法。为了让系统生物学界能方便地使用 SciML,我们开发了 SBMLToolkit.jl。SBMLToolkit.jl 将动态 SBML 模型导入 SciML 生态系统,以加速模型模拟和动力学参数拟合。我们希望通过为计算系统生物学家提供对开源 Julia 生态系统的便捷访问,促进该领域更多 Julia 工具的开发和 Julia 生物科学社区的发展。SBMLToolkit.jl 在 MIT 许可下免费提供。源代码可从 https://github.com/SciML/SBMLToolkit.jl 获取。
{"title":"SBMLToolkit.jl: a Julia package for importing SBML into the SciML ecosystem.","authors":"Paul F Lang, Anand Jain, Christopher Rackauckas","doi":"10.1515/jib-2024-0003","DOIUrl":"10.1515/jib-2024-0003","url":null,"abstract":"<p><p>Julia is a general purpose programming language that was designed for simplifying and accelerating numerical analysis and computational science. In particular the Scientific Machine Learning (SciML) ecosystem of Julia packages includes frameworks for high-performance symbolic-numeric computations. It allows users to automatically enhance high-level descriptions of their models with symbolic preprocessing and automatic sparsification and parallelization of computations. This enables performant solution of differential equations, efficient parameter estimation and methodologies for automated model discovery with neural differential equations and sparse identification of nonlinear dynamics. To give the systems biology community easy access to SciML, we developed SBMLToolkit.jl. SBMLToolkit.jl imports dynamic SBML models into the SciML ecosystem to accelerate model simulation and fitting of kinetic parameters. By providing computational systems biologists with easy access to the open-source Julia ecosystevnm, we hope to catalyze the development of further Julia tools in this domain and the growth of the Julia bioscience community. SBMLToolkit.jl is freely available under the MIT license. The source code is available at https://github.com/SciML/SBMLToolkit.jl.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Integrative Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1