CBMAT: a MATLAB toolbox for data preparation and post hoc analyses in neuroimaging meta-analyses.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2024-08-01 Epub Date: 2023-08-01 DOI:10.3758/s13428-023-02185-3
Jordi Manuello, Donato Liloia, Annachiara Crocetta, Franco Cauda, Tommaso Costa
{"title":"CBMAT: a MATLAB toolbox for data preparation and post hoc analyses in neuroimaging meta-analyses.","authors":"Jordi Manuello, Donato Liloia, Annachiara Crocetta, Franco Cauda, Tommaso Costa","doi":"10.3758/s13428-023-02185-3","DOIUrl":null,"url":null,"abstract":"<p><p>Coordinate-based meta-analysis (CBMA) is a powerful technique in the field of human brain imaging research. Due to its intense usage, several procedures for data preparation and post hoc analyses have been proposed so far. However, these steps are often performed manually by the researcher, and are therefore potentially prone to error and time-consuming. We hence developed the Coordinate-Based Meta-Analyses Toolbox (CBMAT) to provide a suite of user-friendly and automated MATLAB® functions allowing one to perform all these procedures in a fast, reproducible and reliable way. Besides the description of the code, in the present paper we also provide an annotated example of using CBMAT on a dataset including 34 experiments. CBMAT can therefore substantially improve the way data are handled when performing CBMAs. The code can be downloaded from https://github.com/Jordi-Manuello/CBMAT.git .</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"4325-4335"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02185-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coordinate-based meta-analysis (CBMA) is a powerful technique in the field of human brain imaging research. Due to its intense usage, several procedures for data preparation and post hoc analyses have been proposed so far. However, these steps are often performed manually by the researcher, and are therefore potentially prone to error and time-consuming. We hence developed the Coordinate-Based Meta-Analyses Toolbox (CBMAT) to provide a suite of user-friendly and automated MATLAB® functions allowing one to perform all these procedures in a fast, reproducible and reliable way. Besides the description of the code, in the present paper we also provide an annotated example of using CBMAT on a dataset including 34 experiments. CBMAT can therefore substantially improve the way data are handled when performing CBMAs. The code can be downloaded from https://github.com/Jordi-Manuello/CBMAT.git .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBMAT:用于神经成像荟萃分析中的数据准备和事后分析的 MATLAB 工具箱。
基于坐标的荟萃分析(CBMA)是人脑成像研究领域的一项强大技术。由于其使用率极高,迄今已有多种数据准备和事后分析程序被提出。然而,这些步骤通常都是由研究人员手动完成的,因此容易出错且耗时。因此,我们开发了 "基于坐标的元分析工具箱"(CBMAT),提供一套用户友好的自动化 MATLAB® 函数,使人们能够以快速、可重复和可靠的方式执行所有这些程序。除了代码说明外,我们还在本文中提供了一个在包括 34 个实验的数据集上使用 CBMAT 的注释示例。因此,CBMAT 可以极大地改进 CBMA 的数据处理方式。代码可从 https://github.com/Jordi-Manuello/CBMAT.git 下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Dissecting the components of error in analogue report tasks. A template and tutorial for preregistering studies using passive smartphone measures. Scoring story recall for individual differences research: Central details, peripheral details, and automated scoring. A tutorial: Analyzing eye and head movements in virtual reality. Behavioral science labs: How to solve the multi-user problem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1