Lawrence J. Dooling, Jason C. Andrechak, Brandon H. Hayes, Siddhant Kadu, William Zhang, Ruby Pan, Manasvita Vashisth, Jerome Irianto, Cory M. Alvey, Leyuan Ma, Dennis E. Discher
{"title":"Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses","authors":"Lawrence J. Dooling, Jason C. Andrechak, Brandon H. Hayes, Siddhant Kadu, William Zhang, Ruby Pan, Manasvita Vashisth, Jerome Irianto, Cory M. Alvey, Leyuan Ma, Dennis E. Discher","doi":"10.1038/s41551-023-01031-3","DOIUrl":null,"url":null,"abstract":"In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47–SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47–SIRPα may lead to durable anti-tumour responses in solid cancers. Durable anti-tumour responses can be triggered by maximizing the cooperative phagocytic potency of macrophages through the disruption of the CD47–SIRPα macrophage checkpoint and by delivering a tumour-opsonizing monoclonal antibody.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":26.8000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-023-01031-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47–SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47–SIRPα may lead to durable anti-tumour responses in solid cancers. Durable anti-tumour responses can be triggered by maximizing the cooperative phagocytic potency of macrophages through the disruption of the CD47–SIRPα macrophage checkpoint and by delivering a tumour-opsonizing monoclonal antibody.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.