首页 > 最新文献

Nature Biomedical Engineering最新文献

英文 中文
Solvent-mediated analgesia via the suppression of water permeation through TRPV1 ion channels 通过抑制 TRPV1 离子通道的水渗透实现溶剂介导的镇痛作用
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-21 DOI: 10.1038/s41551-024-01288-2
Yuxia Liu, Yuanyuan He, Jiahuan Tong, Shengyang Guo, Xinyu Zhang, Zichao Luo, Linlin Sun, Chao Chang, Bilin Zhuang, Xiaogang Liu

Activation of the ion channel transient receptor potential vanilloid 1 (TRPV1), which is integral to pain perception, leads to an expansion of channel width, facilitating the passage of cations and large organic molecules. However, the permeability of TRPV1 channels to water remains uncertain, owing to a lack of suitable tools to study water dynamics. Here, using upconversion nanophosphors to discriminate between H2O and D2O, by monitoring water permeability across activated TRPV1 at the single-cell and single-molecule levels, and by combining single-channel current measurements with molecular dynamics simulations, we show that water molecules flow through TRPV1 and reveal a direct connection between water migration, cation flow and TRPV1 functionality. We also show in mouse models of acute or chronic inflammatory pain that the administration of deuterated water suppresses TRPV1 activity, interrupts the transmission of pain signals and mitigates pain without impacting other neurological responses. Solvent-mediated analgesia may inspire alternative options for pain management.

瞬时受体电位香草素 1(TRPV1)离子通道是痛觉的重要组成部分,它的激活会导致通道宽度的扩大,从而促进阳离子和大分子有机物的通过。然而,由于缺乏研究水动力学的合适工具,TRPV1 通道对水的渗透性仍不确定。在这里,我们利用上转换纳米磷酸盐来区分 H2O 和 D2O,在单细胞和单分子水平上监测活化的 TRPV1 的水渗透性,并将单通道电流测量与分子动力学模拟相结合,结果表明水分子流经 TRPV1,并揭示了水迁移、阳离子流和 TRPV1 功能之间的直接联系。我们还在急性或慢性炎症性疼痛的小鼠模型中表明,施用氘化水能抑制 TRPV1 的活性,中断疼痛信号的传递,减轻疼痛而不影响其他神经反应。溶剂介导的镇痛可能会激发疼痛治疗的替代选择。
{"title":"Solvent-mediated analgesia via the suppression of water permeation through TRPV1 ion channels","authors":"Yuxia Liu, Yuanyuan He, Jiahuan Tong, Shengyang Guo, Xinyu Zhang, Zichao Luo, Linlin Sun, Chao Chang, Bilin Zhuang, Xiaogang Liu","doi":"10.1038/s41551-024-01288-2","DOIUrl":"https://doi.org/10.1038/s41551-024-01288-2","url":null,"abstract":"<p>Activation of the ion channel transient receptor potential vanilloid 1 (TRPV1), which is integral to pain perception, leads to an expansion of channel width, facilitating the passage of cations and large organic molecules. However, the permeability of TRPV1 channels to water remains uncertain, owing to a lack of suitable tools to study water dynamics. Here, using upconversion nanophosphors to discriminate between H<sub>2</sub>O and D<sub>2</sub>O, by monitoring water permeability across activated TRPV1 at the single-cell and single-molecule levels, and by combining single-channel current measurements with molecular dynamics simulations, we show that water molecules flow through TRPV1 and reveal a direct connection between water migration, cation flow and TRPV1 functionality. We also show in mouse models of acute or chronic inflammatory pain that the administration of deuterated water suppresses TRPV1 activity, interrupts the transmission of pain signals and mitigates pain without impacting other neurological responses. Solvent-mediated analgesia may inspire alternative options for pain management.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"11 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical validation of a wearable ultrasound sensor of blood pressure 可穿戴式超声波血压传感器的临床验证
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-20 DOI: 10.1038/s41551-024-01279-3
Sai Zhou, Geonho Park, Katherine Longardner, Muyang Lin, Baiyan Qi, Xinyi Yang, Xiaoxiang Gao, Hao Huang, Xiangjun Chen, Yizhou Bian, Hongjie Hu, Ray S. Wu, Wentong Yue, Mohan Li, Chengchangfeng Lu, Ruotao Wang, Siyu Qin, Esra Tasali, Theodore Karrison, Isac Thomas, Benjamin Smarr, Erik B. Kistler, Belal Al Khiami, Irene Litvan, Sheng Xu

Options for the continuous and non-invasive monitoring of blood pressure are limited. Cuff-based sphygmomanometers are widely available, yet provide only discrete measurements. The clinical gold-standard approach for the continuous monitoring of blood pressure requires an arterial line, which is too invasive for routine use. Wearable ultrasound for the continuous and non-invasive monitoring of blood pressure promises to elevate the quality of patient care, yet the isolated sonographic windows in the most advanced prototypes can lead to inaccurate or error-prone measurements, and the safety and performance of these devices have not been thoroughly evaluated. Here we describe validation studies, conducted during daily activities at home, in the outpatient clinic, in the cardiac catheterization laboratory and in the intensive care unit, of the safety and performance of a wearable ultrasound sensor for blood pressure monitoring. The sensor has closely connected sonographic windows and a backing layer that improves the sensor’s accuracy and reliability to meet the highest requirements of clinical standards. The validation results support the clinical use of the sensor.

连续和无创血压监测的选择非常有限。袖带式血压计广泛使用,但只能提供离散的测量值。连续监测血压的临床金标准方法需要动脉导管,这对常规使用来说创伤太大。用于连续、无创血压监测的可穿戴超声设备有望提高患者护理质量,但最先进的原型设备中孤立的超声窗口可能导致测量不准确或容易出错,而且这些设备的安全性和性能尚未得到全面评估。在此,我们介绍了在家庭、门诊、心导管实验室和重症监护室的日常活动中对用于血压监测的可穿戴超声波传感器的安全性和性能进行的验证研究。该传感器具有紧密连接的声像窗口和底层,可提高传感器的准确性和可靠性,从而满足临床标准的最高要求。验证结果支持该传感器的临床使用。
{"title":"Clinical validation of a wearable ultrasound sensor of blood pressure","authors":"Sai Zhou, Geonho Park, Katherine Longardner, Muyang Lin, Baiyan Qi, Xinyi Yang, Xiaoxiang Gao, Hao Huang, Xiangjun Chen, Yizhou Bian, Hongjie Hu, Ray S. Wu, Wentong Yue, Mohan Li, Chengchangfeng Lu, Ruotao Wang, Siyu Qin, Esra Tasali, Theodore Karrison, Isac Thomas, Benjamin Smarr, Erik B. Kistler, Belal Al Khiami, Irene Litvan, Sheng Xu","doi":"10.1038/s41551-024-01279-3","DOIUrl":"https://doi.org/10.1038/s41551-024-01279-3","url":null,"abstract":"<p>Options for the continuous and non-invasive monitoring of blood pressure are limited. Cuff-based sphygmomanometers are widely available, yet provide only discrete measurements. The clinical gold-standard approach for the continuous monitoring of blood pressure requires an arterial line, which is too invasive for routine use. Wearable ultrasound for the continuous and non-invasive monitoring of blood pressure promises to elevate the quality of patient care, yet the isolated sonographic windows in the most advanced prototypes can lead to inaccurate or error-prone measurements, and the safety and performance of these devices have not been thoroughly evaluated. Here we describe validation studies, conducted during daily activities at home, in the outpatient clinic, in the cardiac catheterization laboratory and in the intensive care unit, of the safety and performance of a wearable ultrasound sensor for blood pressure monitoring. The sensor has closely connected sonographic windows and a backing layer that improves the sensor’s accuracy and reliability to meet the highest requirements of clinical standards. The validation results support the clinical use of the sensor.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"62 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endocytic tagging for degradation 内切酶标记降解
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-19 DOI: 10.1038/s41551-024-01293-5
Filipe V. Almeida
Proteins that tag surface receptors for degradation by triggering their endocytosis can be computationally designed so that they do not compete with native receptor ligands for binding.
通过触发受体的内吞作用来标记表面受体以便降解的蛋白质可以通过计算设计出来,使其不会与原生受体配体竞争结合。
{"title":"Endocytic tagging for degradation","authors":"Filipe V. Almeida","doi":"10.1038/s41551-024-01293-5","DOIUrl":"https://doi.org/10.1038/s41551-024-01293-5","url":null,"abstract":"Proteins that tag surface receptors for degradation by triggering their endocytosis can be computationally designed so that they do not compete with native receptor ligands for binding.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"54 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ablation of FAS confers allogeneic CD3– CAR T cells with resistance to rejection by T cells and natural killer cells 消融 FAS 使异体 CD3- CAR T 细胞具有抗 T 细胞和自然杀伤细胞排斥的能力
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-18 DOI: 10.1038/s41551-024-01282-8
Silvia Menegatti, Sheila Lopez-Cobo, Aurelien Sutra Del Galy, Jaime Fuentealba, Lisseth Silva, Laetitia Perrin, Sandrine Heurtebise-Chrétien, Valentine Pottez-Jouatte, Aurelie Darbois, Nina Burgdorf, Anne-Laure Privat, Albane Simon, Marguerite Laprie-Sentenac, Michael Saitakis, Bryce Wick, Beau R. Webber, Branden S. Moriarity, Olivier Lantz, Sebastian Amigorena, Laurie Menger

Allogeneic chimaeric antigen receptor T cells (allo-CAR T cells) derived from healthy donors could provide rapid access to standardized and affordable batches of therapeutic cells if their rejection by the host’s immune system is avoided. Here, by means of an in vivo genome-wide CRISPR knockout screen, we show that the deletion of Fas or B2m in allo- T cells increases their survival in immunocompetent mice. Human B2M allo-CAR T cells become highly sensitive to rejection mediated by natural killer (NK) cells, whereas FAS CAR T cells expressing normal levels of human leukocyte antigen I remain resistant to NK cells. CD3 FAS CAR T cells outperformed CD3 B2M CAR T cells in the control of leukaemia growth in mice under allogeneic pressure by T cells and NK cells. The partial protection of CD3 FAS allo-CAR T cells from cellular rejection may improve the efficacy of allogeneic cellular therapies in patients with cancer.

如果能避免宿主免疫系统对异体抗原受体 T 细胞(allo-CAR T 细胞)的排斥反应,那么从健康供体中提取的异体嵌合抗原受体 T 细胞(allo-CAR T 细胞)就能为人们提供快速获取标准化且价格合理的治疗细胞的途径。在这里,我们通过体内全基因组 CRISPR 基因敲除筛选表明,在allo-T 细胞中删除 Fas 或 B2m 能提高它们在免疫功能正常小鼠体内的存活率。人类 B2M- allo-CAR T 细胞对自然杀伤(NK)细胞介导的排斥反应高度敏感,而表达正常水平人类白细胞抗原 I 的 FAS- CAR T 细胞对 NK 细胞仍有抵抗力。在 T 细胞和 NK 细胞的异体压力下,CD3- FAS- CAR T 细胞在控制小鼠白血病生长方面优于 CD3- B2M- CAR T 细胞。CD3- FAS- allo-CAR T 细胞对细胞排斥反应的部分保护作用可能会提高癌症患者接受异体细胞疗法的疗效。
{"title":"Ablation of FAS confers allogeneic CD3– CAR T cells with resistance to rejection by T cells and natural killer cells","authors":"Silvia Menegatti, Sheila Lopez-Cobo, Aurelien Sutra Del Galy, Jaime Fuentealba, Lisseth Silva, Laetitia Perrin, Sandrine Heurtebise-Chrétien, Valentine Pottez-Jouatte, Aurelie Darbois, Nina Burgdorf, Anne-Laure Privat, Albane Simon, Marguerite Laprie-Sentenac, Michael Saitakis, Bryce Wick, Beau R. Webber, Branden S. Moriarity, Olivier Lantz, Sebastian Amigorena, Laurie Menger","doi":"10.1038/s41551-024-01282-8","DOIUrl":"https://doi.org/10.1038/s41551-024-01282-8","url":null,"abstract":"<p>Allogeneic chimaeric antigen receptor T cells (allo-CAR T cells) derived from healthy donors could provide rapid access to standardized and affordable batches of therapeutic cells if their rejection by the host’s immune system is avoided. Here, by means of an in vivo genome-wide CRISPR knockout screen, we show that the deletion of <i>Fas</i> or <i>B2m</i> in allo- T cells increases their survival in immunocompetent mice. Human <i>B2M</i><sup>–</sup> allo-CAR T cells become highly sensitive to rejection mediated by natural killer (NK) cells, whereas <i>FAS</i><sup>–</sup> CAR T cells expressing normal levels of human leukocyte antigen I remain resistant to NK cells. <i>CD3</i><sup>–</sup> <i>FAS</i><sup>–</sup> CAR T cells outperformed <i>CD3</i><sup>–</sup> <i>B2M</i><sup><i>–</i></sup> CAR T cells in the control of leukaemia growth in mice under allogeneic pressure by T cells and NK cells. The partial protection of <i>CD3</i><sup>–</sup> <i>FAS</i><sup>–</sup> allo-CAR T cells from cellular rejection may improve the efficacy of allogeneic cellular therapies in patients with cancer.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"32 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress impacts immunity via the gut 压力通过肠道影响免疫力
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-15 DOI: 10.1038/s41551-024-01294-4
Jennifer Haskell
Stress-sensitive neural circuitry affects immunity via the gut microbiome.
压力敏感神经回路通过肠道微生物组影响免疫力
{"title":"Stress impacts immunity via the gut","authors":"Jennifer Haskell","doi":"10.1038/s41551-024-01294-4","DOIUrl":"https://doi.org/10.1038/s41551-024-01294-4","url":null,"abstract":"Stress-sensitive neural circuitry affects immunity via the gut microbiome.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"154 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dyeing mice transparent 将小鼠染成透明
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-15 DOI: 10.1038/s41551-024-01292-6
Alessandra Griffo
A water-soluble dye that absorbs blue light strongly makes it easier to turn mice transparent.
一种能强烈吸收蓝光的水溶性染料能让小鼠更容易变成透明的。
{"title":"Dyeing mice transparent","authors":"Alessandra Griffo","doi":"10.1038/s41551-024-01292-6","DOIUrl":"https://doi.org/10.1038/s41551-024-01292-6","url":null,"abstract":"A water-soluble dye that absorbs blue light strongly makes it easier to turn mice transparent.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"11 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeing ageing through retinal images 通过视网膜图像看衰老
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-15 DOI: 10.1038/s41551-024-01291-7
Pep Pàmies
A biomarker in retinal images identified by a deep-learning algorithm can predict biological age as well as mortality and morbidity.
深度学习算法识别的视网膜图像中的生物标志物可以预测生物年龄以及死亡率和发病率。
{"title":"Seeing ageing through retinal images","authors":"Pep Pàmies","doi":"10.1038/s41551-024-01291-7","DOIUrl":"https://doi.org/10.1038/s41551-024-01291-7","url":null,"abstract":"A biomarker in retinal images identified by a deep-learning algorithm can predict biological age as well as mortality and morbidity.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"47 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting morphogen gradients 设置形态发生梯度
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-15 DOI: 10.1038/s41551-024-01295-3
Valeria Caprettini
DNA microbeads loaded with an agonist for Wnt and injected into retinal organoids allow for the spatiotemporal control of gradients of the morphogen to better direct organoid development and maturation.
将装有 Wnt 激动剂的 DNA 微珠注射到视网膜器官组织中,可对形态发生器的梯度进行时空控制,从而更好地指导器官组织的发育和成熟。
{"title":"Setting morphogen gradients","authors":"Valeria Caprettini","doi":"10.1038/s41551-024-01295-3","DOIUrl":"https://doi.org/10.1038/s41551-024-01295-3","url":null,"abstract":"DNA microbeads loaded with an agonist for Wnt and injected into retinal organoids allow for the spatiotemporal control of gradients of the morphogen to better direct organoid development and maturation.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"98 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endocisternal interfaces for minimally invasive neural stimulation and recording of the brain and spinal cord 用于对大脑和脊髓进行微创神经刺激和记录的腔内界面
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-11 DOI: 10.1038/s41551-024-01281-9
Joshua C. Chen, Abdeali Dhuliyawalla, Robert Garcia, Ariadna Robledo, Joshua E. Woods, Fatima Alrashdan, Sean O’Leary, Adam Husain, Anthony Price, Scott Crosby, Michelle M. Felicella, Ajay K. Wakhloo, Patrick Karas, Nicole Provenza, Wayne Goodman, Sameer A. Sheth, Sunil A. Sheth, Jacob T. Robinson, Peter Kan

Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid. Thus, the interfaces gain access to the entire brain convexity, to deep brain structures within the ventricles and to the spinal cord from the spinal subarachnoid space. We combined an endocisternal neural interface with wireless miniature magnetoelectrically powered bioelectronics so that it can be freely navigated percutaneously from the spinal space to the cranial subarachnoid space, and from the cranial subarachnoid space to the ventricles. In sheep, we show recording and stimulation functions, as well as repositioning of the flexible electrodes and explantation of the interface after chronic implantation. Minimally invasive endocisternal bioelectronics may enable chronic and transient therapies, particularly for stroke rehabilitation and epilepsy monitoring.

微创神经接口可用于诊断、管理和治疗多种疾病,并降低手术并发症的风险。然而,血管内探针无法进入关键的皮层、皮层下和脊柱靶点,而且在内皮化后通常无法拆卸。在此,我们报告了在绵羊身上开发和测试内腔神经接口的情况,这种接口可通过充满脑脊液的内部和外部空间接近大脑和脊髓目标。这样,接口就能进入整个大脑凸面、脑室内的大脑深层结构以及脊髓蛛网膜下腔的脊髓。我们将内腔神经接口与无线微型磁电驱动生物电子装置相结合,使其可以从脊柱间隙经皮自由导航到颅内蛛网膜下腔,再从颅内蛛网膜下腔导航到脑室。我们在绵羊身上展示了记录和刺激功能,以及长期植入后柔性电极的重新定位和接口的拆卸。微创腔内生物电子学可实现慢性和瞬时疗法,特别是用于中风康复和癫痫监测。
{"title":"Endocisternal interfaces for minimally invasive neural stimulation and recording of the brain and spinal cord","authors":"Joshua C. Chen, Abdeali Dhuliyawalla, Robert Garcia, Ariadna Robledo, Joshua E. Woods, Fatima Alrashdan, Sean O’Leary, Adam Husain, Anthony Price, Scott Crosby, Michelle M. Felicella, Ajay K. Wakhloo, Patrick Karas, Nicole Provenza, Wayne Goodman, Sameer A. Sheth, Sunil A. Sheth, Jacob T. Robinson, Peter Kan","doi":"10.1038/s41551-024-01281-9","DOIUrl":"https://doi.org/10.1038/s41551-024-01281-9","url":null,"abstract":"<p>Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid. Thus, the interfaces gain access to the entire brain convexity, to deep brain structures within the ventricles and to the spinal cord from the spinal subarachnoid space. We combined an endocisternal neural interface with wireless miniature magnetoelectrically powered bioelectronics so that it can be freely navigated percutaneously from the spinal space to the cranial subarachnoid space, and from the cranial subarachnoid space to the ventricles. In sheep, we show recording and stimulation functions, as well as repositioning of the flexible electrodes and explantation of the interface after chronic implantation. Minimally invasive endocisternal bioelectronics may enable chronic and transient therapies, particularly for stroke rehabilitation and epilepsy monitoring.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"245 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stealthy neural recorder for the study of behaviour in primates 用于灵长类动物行为研究的隐形神经记录器
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-08 DOI: 10.1038/s41551-024-01280-w
Saehyuck Oh, Janghwan Jekal, Jinyoung Won, Kyung Seob Lim, Chang-Yeop Jeon, Junghyung Park, Hyeon-Gu Yeo, Yu Gyeong Kim, Young Hee Lee, Leslie Jaesun Ha, Han Hee Jung, Junwoo Yea, Hyeokjun Lee, Jeongdae Ha, Jinmo Kim, Doyoung Lee, Soojeong Song, Jieun Son, Tae Sang Yu, Jungmin Lee, Sanghoon Lee, Jaehong Lee, Bong Hoon Kim, Ji-Woong Choi, Jong-Cheol Rah, Young Min Song, Jae-Woong Jeong, Hyung Jin Choi, Sheng Xu, Youngjeon Lee, Kyung-In Jang

By monitoring brain neural signals, neural recorders allow for the study of neurological mechanisms underlying specific behavioural and cognitive states. However, the large brain volumes of non-human primates and their extensive range of uncontrolled movements and inherent wildness make it difficult to carry out covert and long-term recording and analysis of deep-brain neural signals. Here we report the development and performance of a stealthy neural recorder for the study of naturalistic behaviours in non-human primates. The neural recorder includes a fully implantable wireless and battery-free module for the recording of local field potentials and accelerometry data in real time, a flexible 32-electrode neural probe with a resorbable insertion shuttle, and a repeater coil-based wireless-power-transfer system operating at the body scale. We used the device to record neurobehavioural data for over 1 month in a freely moving monkey and leveraged the recorded data to train an artificial intelligence model for the classification of the animals’ eating behaviours.

通过监测脑神经信号,神经记录器可以研究特定行为和认知状态的神经机制。然而,非人灵长类动物的脑容量大,不受控制的运动范围广,且具有与生俱来的野性,因此很难对深层脑神经信号进行隐蔽、长期的记录和分析。在此,我们报告了用于研究非人灵长类动物自然行为的隐蔽式神经记录器的开发和性能。该神经记录器包括一个用于实时记录局部场电位和加速度数据的完全可植入式无线无电池模块、一个带有可吸收插入梭的灵活的 32 个电极神经探针和一个基于中继线圈的体表无线功率传输系统。我们使用该装置记录了一只自由活动的猴子一个多月的神经行为数据,并利用记录的数据训练了一个人工智能模型,用于对动物的进食行为进行分类。
{"title":"A stealthy neural recorder for the study of behaviour in primates","authors":"Saehyuck Oh, Janghwan Jekal, Jinyoung Won, Kyung Seob Lim, Chang-Yeop Jeon, Junghyung Park, Hyeon-Gu Yeo, Yu Gyeong Kim, Young Hee Lee, Leslie Jaesun Ha, Han Hee Jung, Junwoo Yea, Hyeokjun Lee, Jeongdae Ha, Jinmo Kim, Doyoung Lee, Soojeong Song, Jieun Son, Tae Sang Yu, Jungmin Lee, Sanghoon Lee, Jaehong Lee, Bong Hoon Kim, Ji-Woong Choi, Jong-Cheol Rah, Young Min Song, Jae-Woong Jeong, Hyung Jin Choi, Sheng Xu, Youngjeon Lee, Kyung-In Jang","doi":"10.1038/s41551-024-01280-w","DOIUrl":"https://doi.org/10.1038/s41551-024-01280-w","url":null,"abstract":"<p>By monitoring brain neural signals, neural recorders allow for the study of neurological mechanisms underlying specific behavioural and cognitive states. However, the large brain volumes of non-human primates and their extensive range of uncontrolled movements and inherent wildness make it difficult to carry out covert and long-term recording and analysis of deep-brain neural signals. Here we report the development and performance of a stealthy neural recorder for the study of naturalistic behaviours in non-human primates. The neural recorder includes a fully implantable wireless and battery-free module for the recording of local field potentials and accelerometry data in real time, a flexible 32-electrode neural probe with a resorbable insertion shuttle, and a repeater coil-based wireless-power-transfer system operating at the body scale. We used the device to record neurobehavioural data for over 1 month in a freely moving monkey and leveraged the recorded data to train an artificial intelligence model for the classification of the animals’ eating behaviours.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"95 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Biomedical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1