Nashwa Fathy Gamal El-Tahawy , Rehab Ahmed Rifaai , Entesar Ali Saber , Seham A.Abd El-Aleem , Hanaa Hassanein Mohammed
{"title":"Neuroprotective effect of quercetin nanoparticles: A possible prophylactic effect in cerebellar neurodegenerative disorders","authors":"Nashwa Fathy Gamal El-Tahawy , Rehab Ahmed Rifaai , Entesar Ali Saber , Seham A.Abd El-Aleem , Hanaa Hassanein Mohammed","doi":"10.1016/j.jchemneu.2023.102307","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Memory deficit, anxiety, coordination deficit and depression are common neurological disorders<span> attributed to aluminum (Al) buildup in the nervous system. </span></span>Quercetin nanoparticles (QNPs) are a newly developed effective neuroprotectant. We aimed to investigate the potential protective and therapeutic effects of QNPs in Al induced toxicity in rat </span>cerebellum. A rat model of Al-induced cerebellar damage was created by AlCl</span><sub>3</sub> (100 mg/kg) administration orally for 42 days. QNPs (30 mg/kg) was administered for 42-days as a prophylactic (along with AlCl<sub>3</sub> administration) or therapeutic for 42-days (following AlCl<sub>3</sub><span><span> induced cerebellar damage). Cerebellar tissues were assessed for structural and molecular changes. The results showed that Al induced profound cerebellar structural and molecular changes, including neuronal damage, astrogliosis and </span>tyrosine hydroxylase<span> downregulation. Prophylactic QNPs significantly reduced Al induced cerebellar neuronal degeneration<span>. QNPs is a promising neuroprotectant that can be used in elderly and vulnerable subjects to protect against neurological deterioration. It could be a promising new line for therapeutic intervention in neurodegenerative diseases.</span></span></span></p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"132 ","pages":"Article 102307"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061823000777","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Memory deficit, anxiety, coordination deficit and depression are common neurological disorders attributed to aluminum (Al) buildup in the nervous system. Quercetin nanoparticles (QNPs) are a newly developed effective neuroprotectant. We aimed to investigate the potential protective and therapeutic effects of QNPs in Al induced toxicity in rat cerebellum. A rat model of Al-induced cerebellar damage was created by AlCl3 (100 mg/kg) administration orally for 42 days. QNPs (30 mg/kg) was administered for 42-days as a prophylactic (along with AlCl3 administration) or therapeutic for 42-days (following AlCl3 induced cerebellar damage). Cerebellar tissues were assessed for structural and molecular changes. The results showed that Al induced profound cerebellar structural and molecular changes, including neuronal damage, astrogliosis and tyrosine hydroxylase downregulation. Prophylactic QNPs significantly reduced Al induced cerebellar neuronal degeneration. QNPs is a promising neuroprotectant that can be used in elderly and vulnerable subjects to protect against neurological deterioration. It could be a promising new line for therapeutic intervention in neurodegenerative diseases.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.