Mohammad Mehdi Hosseinzadeh, Mario Cannataro, Pietro Hiram Guzzi, Riccardo Dondi
{"title":"Temporal networks in biology and medicine: a survey on models, algorithms, and tools.","authors":"Mohammad Mehdi Hosseinzadeh, Mario Cannataro, Pietro Hiram Guzzi, Riccardo Dondi","doi":"10.1007/s13721-022-00406-x","DOIUrl":null,"url":null,"abstract":"<p><p>The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further state some promising research directions in the area. Main results of this study include a systematic review of fundamental temporal network problems and their algorithmic solutions considered in the literature, in particular those having application in computational biology and medicine. We also include the main software developed in this context.</p>","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":"12 1","pages":"10"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803903/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Modeling and Analysis in Health Informatics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13721-022-00406-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further state some promising research directions in the area. Main results of this study include a systematic review of fundamental temporal network problems and their algorithmic solutions considered in the literature, in particular those having application in computational biology and medicine. We also include the main software developed in this context.
期刊介绍:
NetMAHIB publishes original research articles and reviews reporting how graph theory, statistics, linear algebra and machine learning techniques can be effectively used for modelling and analysis in health informatics and bioinformatics. It aims at creating a synergy between these disciplines by providing a forum for disseminating the latest developments and research findings; hence, results can be shared with readers across institutions, governments, researchers, students, and the industry. The journal emphasizes fundamental contributions on new methodologies, discoveries and techniques that have general applicability and which form the basis for network based modelling, knowledge discovery, knowledge sharing and decision support to the benefit of patients, healthcare professionals and society in traditional and advanced emerging settings, including eHealth and mHealth .