首页 > 最新文献

Network Modeling and Analysis in Health Informatics and Bioinformatics最新文献

英文 中文
Motif discovery in hospital ward vital signs observation networks. 医院病房生命体征观测网络中的动机发现。
IF 2 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-07 DOI: 10.1007/s13721-024-00490-1
Rupert Ironside-Smith, Beryl Noë, Stuart M Allen, Shannon Costello, Liam D Turner

Vital signs observations are regular measurements used by healthcare staff to track a patient's overall health status on hospital wards. We look at the potential in re-purposing aggregated and anonymised hospital data sources surrounding vital signs recording to provide new insights into how care is managed and delivered on wards. In this paper, we conduct a retrospective longitudinal observational study of 770,720 individual vital signs recordings across 20 hospital wards in South Wales (UK) and present a network modelling framework to explore and extract behavioural patterns via analysis of the resulting network structures at a global and local level. Self-loop edges, dyad, triad, and tetrad subgraphs were extracted and evaluated against a null model to determine individual statistical significance, and then combined into ward-level feature vectors to provide the means for determining notable behaviours across wards. Modelling data as a static network, by aggregating all vital sign observation data points, resulted in high uniformity but with the loss of important information which was better captured when modelling the static-temporal network, highlighting time's crucial role as a network element. Wards mostly followed expected patterns, with chains or stand-alone supplementary observations by clinical staff. However, observation sequences that deviate from this are revealed in five identified motif subgraphs and 6 anti-motif subgraphs. External ward characteristics also showed minimal impact on the relative abundance of subgraphs, indicating a 'superfamily' phenomena that has been similarly seen in complex networks in other domains. Overall, the results show that network modelling effectively captured and exposed behaviours within vital signs observation data, and demonstrated uniformity across hospital wards in managing this practice.

生命体征观察是医护人员用来跟踪医院病房病人整体健康状态的常规测量方法。我们研究了围绕生命体征记录的汇总和匿名医院数据源的再利用潜力,以便为病房护理管理和服务提供新的见解。在本文中,我们对英国南威尔士 20 家医院病房的 770,720 次个人生命体征记录进行了回顾性纵向观察研究,并提出了一个网络建模框架,通过分析由此产生的全局和局部层面的网络结构来探索和提取行为模式。提取自环边缘、二元、三元和四元子图,并根据空模型进行评估,以确定单个统计意义,然后组合成病房级特征向量,为确定各病房的显著行为提供方法。通过汇总所有生命体征观测数据点,将数据建模为静态网络,虽然统一性很高,但却丢失了一些重要信息,而在建模静态-时间网络时,这些重要信息得到了更好的捕捉,突出了时间作为网络元素的关键作用。病房大多遵循预期模式,由临床人员进行连锁或独立的补充观察。然而,5 个已识别的主题子图和 6 个反主题子图揭示了偏离这一模式的观察序列。外部病房特征对子图相对丰度的影响也很小,这表明在其他领域的复杂网络中也存在类似的 "超家族 "现象。总之,研究结果表明,网络建模有效地捕捉和揭示了生命体征观察数据中的行为,并证明了各病房在管理这种行为方面的一致性。
{"title":"Motif discovery in hospital ward vital signs observation networks.","authors":"Rupert Ironside-Smith, Beryl Noë, Stuart M Allen, Shannon Costello, Liam D Turner","doi":"10.1007/s13721-024-00490-1","DOIUrl":"10.1007/s13721-024-00490-1","url":null,"abstract":"<p><p>Vital signs observations are regular measurements used by healthcare staff to track a patient's overall health status on hospital wards. We look at the potential in re-purposing aggregated and anonymised hospital data sources surrounding vital signs recording to provide new insights into how care is managed and delivered on wards. In this paper, we conduct a retrospective longitudinal observational study of 770,720 individual vital signs recordings across 20 hospital wards in South Wales (UK) and present a network modelling framework to explore and extract behavioural patterns via analysis of the resulting network structures at a global and local level. Self-loop edges, dyad, triad, and tetrad subgraphs were extracted and evaluated against a null model to determine individual statistical significance, and then combined into ward-level feature vectors to provide the means for determining notable behaviours across wards. Modelling data as a static network, by aggregating all vital sign observation data points, resulted in high uniformity but with the loss of important information which was better captured when modelling the static-temporal network, highlighting time's crucial role as a network element. Wards mostly followed expected patterns, with chains or stand-alone supplementary observations by clinical staff. However, observation sequences that deviate from this are revealed in five identified motif subgraphs and 6 anti-motif subgraphs. External ward characteristics also showed minimal impact on the relative abundance of subgraphs, indicating a 'superfamily' phenomena that has been similarly seen in complex networks in other domains. Overall, the results show that network modelling effectively captured and exposed behaviours within vital signs observation data, and demonstrated uniformity across hospital wards in managing this practice.</p>","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved cost-sensitive approach toward the selection of wart treatment methods 一个改进的成本敏感的方法,以选择疣治疗方法
Q2 Mathematics Pub Date : 2023-11-14 DOI: 10.1007/s13721-023-00433-2
Abinash Mishra, U. Srinivasulu Reddy, A. Venkataswamy Reddy
{"title":"An improved cost-sensitive approach toward the selection of wart treatment methods","authors":"Abinash Mishra, U. Srinivasulu Reddy, A. Venkataswamy Reddy","doi":"10.1007/s13721-023-00433-2","DOIUrl":"https://doi.org/10.1007/s13721-023-00433-2","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic classification of depressive users on Twitter including temporal analysis 对Twitter上抑郁用户的自动分类,包括时间分析
Q2 Mathematics Pub Date : 2023-11-09 DOI: 10.1007/s13721-023-00434-1
Luis Roberto García-Noguez, Saúl Tovar-Arriaga, Wilfrido Jacobo Paredes-García, Juan Manuel Ramos-Arreguín, Marco Antonio Aceves-Fernandez
{"title":"Automatic classification of depressive users on Twitter including temporal analysis","authors":"Luis Roberto García-Noguez, Saúl Tovar-Arriaga, Wilfrido Jacobo Paredes-García, Juan Manuel Ramos-Arreguín, Marco Antonio Aceves-Fernandez","doi":"10.1007/s13721-023-00434-1","DOIUrl":"https://doi.org/10.1007/s13721-023-00434-1","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135240777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A diagnosis model for detection and classification of diabetic retinopathy using deep learning 基于深度学习的糖尿病视网膜病变检测与分类诊断模型
Q2 Mathematics Pub Date : 2023-10-13 DOI: 10.1007/s13721-023-00432-3
Saba Raoof Syed, Saleem Durai M A
{"title":"A diagnosis model for detection and classification of diabetic retinopathy using deep learning","authors":"Saba Raoof Syed, Saleem Durai M A","doi":"10.1007/s13721-023-00432-3","DOIUrl":"https://doi.org/10.1007/s13721-023-00432-3","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135856248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of cortisol mechanism to predict common genes between PCOS and its co-morbidities 皮质醇预测多囊卵巢综合征及其合并症共同基因的机制分析
Q2 Mathematics Pub Date : 2023-09-23 DOI: 10.1007/s13721-023-00429-y
V. Vidhya Rajalakshmi, Jayaprakash Chinnappan
{"title":"Analysis of cortisol mechanism to predict common genes between PCOS and its co-morbidities","authors":"V. Vidhya Rajalakshmi, Jayaprakash Chinnappan","doi":"10.1007/s13721-023-00429-y","DOIUrl":"https://doi.org/10.1007/s13721-023-00429-y","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135967103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IR-CNN: Inception residual network for detecting kidney abnormalities from CT images IR-CNN:基于CT图像检测肾脏异常的初始残差网络
Q2 Mathematics Pub Date : 2023-09-20 DOI: 10.1007/s13721-023-00431-4
Sohaib Asif, None Qurrat-ul-Ain, Muhammad Awais, Saif Ur Rehman Khan
{"title":"IR-CNN: Inception residual network for detecting kidney abnormalities from CT images","authors":"Sohaib Asif, None Qurrat-ul-Ain, Muhammad Awais, Saif Ur Rehman Khan","doi":"10.1007/s13721-023-00431-4","DOIUrl":"https://doi.org/10.1007/s13721-023-00431-4","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136308869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements and emerging trends in brain tumor classification using MRI: a systematic review MRI在脑肿瘤分类中的进展和新趋势:系统回顾
IF 2.3 Q2 Mathematics Pub Date : 2023-09-09 DOI: 10.1007/s13721-023-00428-z
Asmita Dixit, Manish Kumar Thakur
{"title":"Advancements and emerging trends in brain tumor classification using MRI: a systematic review","authors":"Asmita Dixit, Manish Kumar Thakur","doi":"10.1007/s13721-023-00428-z","DOIUrl":"https://doi.org/10.1007/s13721-023-00428-z","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84623079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COVID-19 lag time and case fatality rate calculation tool, as well as a tool to identify when policymakers made mistakes COVID-19滞后时间和病死率计算工具,以及识别政策制定者何时犯错的工具
IF 2.3 Q2 Mathematics Pub Date : 2023-09-05 DOI: 10.1007/s13721-023-00430-5
Yoshiyasu Takefuji
{"title":"COVID-19 lag time and case fatality rate calculation tool, as well as a tool to identify when policymakers made mistakes","authors":"Yoshiyasu Takefuji","doi":"10.1007/s13721-023-00430-5","DOIUrl":"https://doi.org/10.1007/s13721-023-00430-5","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82255341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using nonlinear analysis and neural network to classify bipolar I disorder electroencephalogram signals from normal electroencephalograms 应用非线性分析和神经网络对双相I型障碍脑电图信号与正常脑电图进行分类
IF 2.3 Q2 Mathematics Pub Date : 2023-09-05 DOI: 10.1007/s13721-023-00426-1
Junfeng Ma
{"title":"Using nonlinear analysis and neural network to classify bipolar I disorder electroencephalogram signals from normal electroencephalograms","authors":"Junfeng Ma","doi":"10.1007/s13721-023-00426-1","DOIUrl":"https://doi.org/10.1007/s13721-023-00426-1","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74643558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exhaustive review of computational prediction techniques for PPI sites, protein locations, and protein functions 详尽的审查计算预测技术的PPI位点,蛋白质的位置,和蛋白质的功能
IF 2.3 Q2 Mathematics Pub Date : 2023-08-31 DOI: 10.1007/s13721-023-00427-0
Prajna Bhat, Nagamma Patil
{"title":"An exhaustive review of computational prediction techniques for PPI sites, protein locations, and protein functions","authors":"Prajna Bhat, Nagamma Patil","doi":"10.1007/s13721-023-00427-0","DOIUrl":"https://doi.org/10.1007/s13721-023-00427-0","url":null,"abstract":"","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78765668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Network Modeling and Analysis in Health Informatics and Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1