{"title":"Dimethylarginine Dimethylaminohydrolase - 1 expression is increased under tBHP-induced oxidative stress regulates nitric oxide production in PCa cells attenuates mitochondrial ROS-mediated apoptosis","authors":"Sakkarai Mohamed Asha Parveen , Karthik Reddy Kami Reddy , Ramesh Ummanni","doi":"10.1016/j.niox.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression is frequently elevated in different cancers including prostate cancer (PCa) and enhances nitric oxide (NO) production in tumor cells by metabolising endogenous nitric oxide synthase (NOS) inhibitors. DDAH1 protects the PCa cells from cell death and promotes survival. In this study, we have investigated the cytoprotective role of DDAH1 and determined the mechanism of DDAH1 in protecting the cells in tumor microenvironment. Proteomic analysis of PCa cells with stable overexpression of DDAH1 has identified that oxidative stress-related activity is altered. Oxidative stress promotes cancer cell proliferation, survival and causes chemoresistance. A known inducer of oxidative stress, <em>tert</em>-Butyl Hydroperoxide (tBHP) treatment to PCa cells led to elevated DDAH1 level that is actively involved in protecting the PCa cells from oxidative stress induced cell damage. In PC3-DDAH1<sup>—</sup> cells, tBHP treatment led to higher mROS levels indicating that the loss of DDAH1 increases the oxidative stress and eventually leads to cell death. Under oxidative stress, nuclear Nrf2 controlled by SIRT1 positively regulates DDAH1 expression in PC3 cells. In PC3-DDAH1<sup>+</sup> cells, tBHP induced DNA damage is well tolerated compared to wild-type cells while PC3-DDAH1<sup>—</sup> became sensitive to tBHP. In PC3 cells, tBHPexposure has increased the production of NO and GSH which may be acting as an antioxidant defence to overcome oxidative stress. Furthermore, in tBHP treated PCa cells, DDAH1 is controlling the expression of Bcl2, active PARP and caspase 3. Taken together, these results confirm that DDAH1 is involved in the antioxidant defence system and promotes cell survival.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"138 ","pages":"Pages 70-84"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108986032300068X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression is frequently elevated in different cancers including prostate cancer (PCa) and enhances nitric oxide (NO) production in tumor cells by metabolising endogenous nitric oxide synthase (NOS) inhibitors. DDAH1 protects the PCa cells from cell death and promotes survival. In this study, we have investigated the cytoprotective role of DDAH1 and determined the mechanism of DDAH1 in protecting the cells in tumor microenvironment. Proteomic analysis of PCa cells with stable overexpression of DDAH1 has identified that oxidative stress-related activity is altered. Oxidative stress promotes cancer cell proliferation, survival and causes chemoresistance. A known inducer of oxidative stress, tert-Butyl Hydroperoxide (tBHP) treatment to PCa cells led to elevated DDAH1 level that is actively involved in protecting the PCa cells from oxidative stress induced cell damage. In PC3-DDAH1— cells, tBHP treatment led to higher mROS levels indicating that the loss of DDAH1 increases the oxidative stress and eventually leads to cell death. Under oxidative stress, nuclear Nrf2 controlled by SIRT1 positively regulates DDAH1 expression in PC3 cells. In PC3-DDAH1+ cells, tBHP induced DNA damage is well tolerated compared to wild-type cells while PC3-DDAH1— became sensitive to tBHP. In PC3 cells, tBHPexposure has increased the production of NO and GSH which may be acting as an antioxidant defence to overcome oxidative stress. Furthermore, in tBHP treated PCa cells, DDAH1 is controlling the expression of Bcl2, active PARP and caspase 3. Taken together, these results confirm that DDAH1 is involved in the antioxidant defence system and promotes cell survival.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.