A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans.

IF 7.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY PLoS Biology Pub Date : 2023-09-14 eCollection Date: 2023-09-01 DOI:10.1371/journal.pbio.3002284
Raimund Jung, Marie C Lechler, Ana Fernandez-Villegas, Chyi Wei Chung, Harry C Jones, Yoon Hee Choi, Maximilian A Thompson, Christian Rödelsperger, Waltraud Röseler, Gabriele S Kaminski Schierle, Ralf J Sommer, Della C David
{"title":"A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans.","authors":"Raimund Jung, Marie C Lechler, Ana Fernandez-Villegas, Chyi Wei Chung, Harry C Jones, Yoon Hee Choi, Maximilian A Thompson, Christian Rödelsperger, Waltraud Röseler, Gabriele S Kaminski Schierle, Ralf J Sommer, Della C David","doi":"10.1371/journal.pbio.3002284","DOIUrl":null,"url":null,"abstract":"<p><p>During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002284","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种安全机制能够使秀丽隐杆线虫在衰老过程中对蛋白质聚集产生组织特异性抵抗。
在衰老过程中,蛋白质稳定能力下降,不同的蛋白质变得不稳定,并可以在细胞内外作为蛋白质聚集体积累。在疾病和衰老过程中,蛋白质选择性地聚集在某些组织中,而不是其他组织中。然而,对细胞质蛋白聚集的组织特异性调控仍知之甚少。令人惊讶的是,我们发现,3个核心蛋白质质量控制系统,即伴侣蛋白、蛋白酶体和大自噬的抑制,导致秀丽隐杆线虫咽肌中年龄依赖性蛋白质聚集水平较低,但体壁肌肉中的蛋白质聚集水平较高。我们描述了一种新的安全机制,该机制选择性地靶向新合成的蛋白质,以抑制其聚集和相关的蛋白毒性。安全机制依赖于大自噬非依赖性溶酶体降解,并涉及细胞内病原体反应(IPR)的几个先前未表征的成分。我们提出,这种保护机制涉及一种针对溶酶体降解的聚集蛋白的抗聚集机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology 生物-生化与分子生物学
CiteScore
14.40
自引率
2.00%
发文量
359
审稿时长
3 months
期刊介绍: PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly. ISSN Numbers: eISSN: 1545-7885 ISSN: 1544-9173
期刊最新文献
Functional network modules overlap and are linked to interindividual connectome differences during human brain development Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion Organelle landscape analysis using a multiparametric particle-based method Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1