{"title":"Consistent control information driven musculoskeletal model for multiday myoelectric control.","authors":"Jiamin Zhao, Yang Yu, Xinjun Sheng, Xiangyang Zhu","doi":"10.1088/1741-2552/acef93","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Musculoskeletal model (MM)-based myoelectric interface has aroused great interest in human-machine interaction. However, the performance of electromyography (EMG)-driven MM in long-term use would be degraded owing to the inherent non-stationary characteristics of EMG signals. Here, to improve the estimation performance without retraining, we proposed a consistent muscle excitation extraction approach based on an improved non-negative matrix factorization (NMF) algorithm for MM when applied to simultaneous hand and wrist movement prediction.<i>Approach.</i>We added constraints and<i>L</i><sub>2</sub>-norm regularization terms to the objective function of classic NMF regarding muscle weighting matrix and time-varying profiles, through which stable muscle synergies across days were identified. The resultant profiles of these synergies were then used to drive the MM. Both offline and online experiments were conducted to evaluate the performance of the proposed method in inter-day scenarios.<i>Main results.</i>The results demonstrated significantly better and more robust performance over several competitive methods in inter-day experiments, including machine learning methods, EMG envelope-driven MM, and classic NMF-based MM. Furthermore, the analysis of control information on different days revealed the effectiveness of the proposed method in obtaining consistent muscle excitations.<i>Significance.</i>The outcomes potentially provide a novel and promising pathway for the robust and zero-retraining control of myoelectric interfaces.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acef93","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Objective.Musculoskeletal model (MM)-based myoelectric interface has aroused great interest in human-machine interaction. However, the performance of electromyography (EMG)-driven MM in long-term use would be degraded owing to the inherent non-stationary characteristics of EMG signals. Here, to improve the estimation performance without retraining, we proposed a consistent muscle excitation extraction approach based on an improved non-negative matrix factorization (NMF) algorithm for MM when applied to simultaneous hand and wrist movement prediction.Approach.We added constraints andL2-norm regularization terms to the objective function of classic NMF regarding muscle weighting matrix and time-varying profiles, through which stable muscle synergies across days were identified. The resultant profiles of these synergies were then used to drive the MM. Both offline and online experiments were conducted to evaluate the performance of the proposed method in inter-day scenarios.Main results.The results demonstrated significantly better and more robust performance over several competitive methods in inter-day experiments, including machine learning methods, EMG envelope-driven MM, and classic NMF-based MM. Furthermore, the analysis of control information on different days revealed the effectiveness of the proposed method in obtaining consistent muscle excitations.Significance.The outcomes potentially provide a novel and promising pathway for the robust and zero-retraining control of myoelectric interfaces.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.