Osvaldo Burastero, George Draper-Barr, Bertrand Raynal, Maelenn Chevreuil, Patrick England, Maria Garcia Alai
{"title":"Raynals, an online tool for the analysis of dynamic light scattering.","authors":"Osvaldo Burastero, George Draper-Barr, Bertrand Raynal, Maelenn Chevreuil, Patrick England, Maria Garcia Alai","doi":"10.1107/S2059798323004862","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic light scattering (DLS) is routinely employed to assess the homogeneity and size-distribution profile of samples containing microscopic particles in suspension or solubilized polymers. In this work, Raynals, user-friendly software for the analysis of single-angle DLS data that uses the Tikhonov-Phillips regularization, is introduced. Its performance is evaluated on simulated and experimental data generated by different DLS instruments for several proteins and gold nanoparticles. DLS data can easily be misinterpreted and the simulation tools available in Raynals allow the limitations of the measurement and its resolution to be understood. It was designed as a tool to address the quality control of biological samples during sample preparation and optimization and it helps in the detection of aggregates, showing the influence of large particles. Lastly, Raynals provides flexibility in the way that the data are presented, allows the export of publication-quality figures, is free for academic use and can be accessed online on the eSPC data-analysis platform at https://spc.embl-hamburg.de/.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 8","pages":"673-683"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394669/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798323004862","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Dynamic light scattering (DLS) is routinely employed to assess the homogeneity and size-distribution profile of samples containing microscopic particles in suspension or solubilized polymers. In this work, Raynals, user-friendly software for the analysis of single-angle DLS data that uses the Tikhonov-Phillips regularization, is introduced. Its performance is evaluated on simulated and experimental data generated by different DLS instruments for several proteins and gold nanoparticles. DLS data can easily be misinterpreted and the simulation tools available in Raynals allow the limitations of the measurement and its resolution to be understood. It was designed as a tool to address the quality control of biological samples during sample preparation and optimization and it helps in the detection of aggregates, showing the influence of large particles. Lastly, Raynals provides flexibility in the way that the data are presented, allows the export of publication-quality figures, is free for academic use and can be accessed online on the eSPC data-analysis platform at https://spc.embl-hamburg.de/.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.