首页 > 最新文献

Acta Crystallographica. Section D, Structural Biology最新文献

英文 中文
AlphaFold-guided molecular replacement for solving challenging crystal structures. alphafold引导分子替代解决具有挑战性的晶体结构。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-01 DOI: 10.1107/S2059798324011999
Wei Wang, Zhen Gong, Wayne A Hendrickson

Molecular replacement (MR) is highly effective for biomolecular crystal structure determination, increasingly so as the database of known structures has increased. For candidates without recognizable similarity to known structures, however, crystal structure analyses have nearly always required experiments for de novo phase evaluation. Now, with the unprecedented accuracy of AlphaFold predictions of protein structures from amino-acid sequences, an appreciable expansion of the reach of MR for proteins is realized. Here, we sought to automate an AlphaFold-guided MR procedure that tailors predictions to the MR problem at hand. We first optimized the reliability cutoff parameters for residue inclusion as tested in application to a previously MR-intractable problem. We then examined cases where AlphaFold by default predicts a conformation alternative to that of the candidate structure, devising tests for MR solution either from domain-specific predictions or from predictions based on diverse sequence subclusters. We tested subclustering procedures on an enzyme system that entails multiple MR-challenging conformations. The overall process as implemented in Phenix automatically surveys a succession of trials of increasing computational complexity until an MR solution is found or the options are exhausted. Validated MR solutions were found for 92% of one set of 158 challenging problems from the PDB and 93% of those from a second set of 215 challenges. Thus, many crystal structure analyses that previously required experimental phase evaluation can now be solved by AlphaFold-guided MR. In effect, this and related MR approaches are de novo phasing methods.

分子替代(MR)是测定生物分子晶体结构非常有效的方法,随着已知结构数据库的增加,这种方法也越来越有效。然而,对于与已知结构没有可识别的相似性的候选物,晶体结构分析几乎总是需要进行从头相评估的实验。现在,随着AlphaFold对氨基酸序列蛋白质结构预测的前所未有的准确性,实现了MR对蛋白质的范围的显着扩展。在这里,我们试图自动化alphafold引导的MR过程,根据手头的MR问题量身定制预测。我们首先优化了残留物包含的可靠性截止参数,并将其应用于先前的mr棘手问题。然后,我们检查了AlphaFold在默认情况下预测候选结构的构象替代的情况,根据特定领域的预测或基于不同序列子簇的预测为MR解决方案设计测试。我们在一个酶系统上测试了亚聚类程序,该系统需要多个具有核磁共振挑战性的构象。在Phenix中实现的整个过程自动调查一系列增加计算复杂性的试验,直到找到MR解决方案或耗尽选项。在PDB的158个具有挑战性的问题中,有92%的问题得到了验证的MR解决方案,在第二组215个问题中,有93%的问题得到了验证的MR解决方案。因此,许多以前需要实验相位评估的晶体结构分析现在可以通过alphafold引导的MR来解决。实际上,这种方法和相关的MR方法都是新的相位方法。
{"title":"AlphaFold-guided molecular replacement for solving challenging crystal structures.","authors":"Wei Wang, Zhen Gong, Wayne A Hendrickson","doi":"10.1107/S2059798324011999","DOIUrl":"10.1107/S2059798324011999","url":null,"abstract":"<p><p>Molecular replacement (MR) is highly effective for biomolecular crystal structure determination, increasingly so as the database of known structures has increased. For candidates without recognizable similarity to known structures, however, crystal structure analyses have nearly always required experiments for de novo phase evaluation. Now, with the unprecedented accuracy of AlphaFold predictions of protein structures from amino-acid sequences, an appreciable expansion of the reach of MR for proteins is realized. Here, we sought to automate an AlphaFold-guided MR procedure that tailors predictions to the MR problem at hand. We first optimized the reliability cutoff parameters for residue inclusion as tested in application to a previously MR-intractable problem. We then examined cases where AlphaFold by default predicts a conformation alternative to that of the candidate structure, devising tests for MR solution either from domain-specific predictions or from predictions based on diverse sequence subclusters. We tested subclustering procedures on an enzyme system that entails multiple MR-challenging conformations. The overall process as implemented in Phenix automatically surveys a succession of trials of increasing computational complexity until an MR solution is found or the options are exhausted. Validated MR solutions were found for 92% of one set of 158 challenging problems from the PDB and 93% of those from a second set of 215 challenges. Thus, many crystal structure analyses that previously required experimental phase evaluation can now be solved by AlphaFold-guided MR. In effect, this and related MR approaches are de novo phasing methods.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"4-21"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making the most of an abundance of data. 充分利用丰富的数据。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-01 DOI: 10.1107/S205979832401204X
Christoph Mueller-Dieckmann, Anna J Warren, David G Waterman

The Guest Editors introduce the special issue based on talks at the CCP4 Study Weekend 2023. The virtual issue is available at https://journals.iucr.org/special_issues/2024/CCP42023/.

特邀编辑根据CCP4学习周末2023的讲座介绍特刊。虚拟问题可以在https://journals.iucr.org/special_issues/2024/CCP42023/上找到。
{"title":"Making the most of an abundance of data.","authors":"Christoph Mueller-Dieckmann, Anna J Warren, David G Waterman","doi":"10.1107/S205979832401204X","DOIUrl":"10.1107/S205979832401204X","url":null,"abstract":"<p><p>The Guest Editors introduce the special issue based on talks at the CCP4 Study Weekend 2023. The virtual issue is available at https://journals.iucr.org/special_issues/2024/CCP42023/.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"1-3"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules. 小楔同步加速器晶体学对蛋白质分子精确结构分析的有用实验方面。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-01 DOI: 10.1107/S2059798324011987
Kunio Hirata

Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement. We evaluated the data quality using SWSX, focusing on `massive data collection'. In this context, `massive' refers to data sets with a multiplicity exceeding 100. The findings could potentially lead to the development of more efficient experimental conditions, such as obtaining high-resolution data using a smaller number of crystals. We have demonstrated that the application of machine learning, a modern key component of data science, to classify data groups is an integral part of the analysis process and may play a crucial role in improving data quality. These results indicate that SWSX is one of the essential candidates for crystal structure analysis methods for difficult-to-analyze samples: it can enable diverse and complex protein functional analysis.

低发射同步x射线技术和高灵敏度光子计数探测器的最新进展彻底改变了结构生物学中的蛋白质微晶体学。样品交换机器人和光束线控制的这些发展和改进为自动化和高效的无人值守数据收集铺平了道路。本研究利用小楔同步加速器晶体学(SWSX)对2型血管紧张素II受体、CNNM/CorC膜蛋白和多面体蛋白晶体等蛋白质晶体结构进行了分析,通过自动化测量大大提高了测量效率。我们使用SWSX评估数据质量,重点关注“海量数据收集”。在这种情况下,“海量”指的是多重性超过100的数据集。这一发现可能会导致开发更有效的实验条件,例如使用更少的晶体获得高分辨率数据。我们已经证明,应用机器学习(数据科学的现代关键组成部分)对数据组进行分类是分析过程的一个组成部分,可能在提高数据质量方面发挥关键作用。这些结果表明,对于难以分析的样品,SWSX是晶体结构分析方法的重要候选者之一:它可以实现多样化和复杂的蛋白质功能分析。
{"title":"Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules.","authors":"Kunio Hirata","doi":"10.1107/S2059798324011987","DOIUrl":"10.1107/S2059798324011987","url":null,"abstract":"<p><p>Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement. We evaluated the data quality using SWSX, focusing on `massive data collection'. In this context, `massive' refers to data sets with a multiplicity exceeding 100. The findings could potentially lead to the development of more efficient experimental conditions, such as obtaining high-resolution data using a smaller number of crystals. We have demonstrated that the application of machine learning, a modern key component of data science, to classify data groups is an integral part of the analysis process and may play a crucial role in improving data quality. These results indicate that SWSX is one of the essential candidates for crystal structure analysis methods for difficult-to-analyze samples: it can enable diverse and complex protein functional analysis.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"22-37"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1. 铜绿假单胞菌P1株截短的Ia族IV型蛋白的1.3 Å分辨率结构。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI: 10.1107/S205979832401132X
Nicholas Bragagnolo, Gerald F Audette

The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.3 Å resolution crystal structure of the N-terminally truncated type IV pilin from P. aeruginosa strain P1 (ΔP1) is reported, the first structure of its phylogenetically linked group (group I) to be discussed in the literature. The structure was solved from X-ray diffraction data that were collected 20 years ago with a molecular-replacement search model generated using AlphaFold; the effectiveness of other search models was analyzed. Examination of the high-resolution ΔP1 structure revealed a solvent network that aids in maintaining the fold of the protein. On comparing the sequence and structure of P1 with a variety of type IV pilins, it was observed that there are cases of higher structural similarities between the phylogenetic groups of P. aeruginosa than there are between the same phylogenetic group, indicating that a structural grouping of pilins may be necessary in developing antivirulence drugs and vaccines. These analyses also identified the α-β loop as the most structurally diverse domain of the pilins, which could allow it to serve a role in pilus recognition. Studies of ΔP1 in vitro polymerization demonstrate that the optimal hydrophobic catalyst for the oligomerization of the pilus from strain K122 is not conducive for pilus formation of ΔP1; a model of a three-start helical assembly using the ΔP1 structure indicates that the α-β loop and the D-loop prevent in vitro polymerization.

IV型菌毛是一种多样的分子机器,能够赋予多种功能,由多种细菌种类产生。菌毛粘附宿主细胞的能力使其成为开发抗铜绿假单胞菌等人类病原体感染疫苗的可行靶点。本文报道了P. aeruginosa菌株P1 (ΔP1) n端截短的IV型pilin的1.3 Å分辨率晶体结构,这是文献中讨论的其系统发育连锁基团(I族)的第一个结构。该结构是根据20年前收集的x射线衍射数据,用AlphaFold生成的分子替代搜索模型求解的;分析了其他搜索模型的有效性。对高分辨率ΔP1结构的检查揭示了一个有助于维持蛋白质折叠的溶剂网络。通过比较P1与多种IV型匹林的序列和结构,我们发现铜绿假单胞菌系统发育群之间的结构相似性高于相同系统发育群之间的结构相似性,这表明在开发抗毒药物和疫苗时可能需要对匹林进行结构分组。这些分析还发现,α-β环是菌毛中结构最多样化的区域,这可能使其在菌毛识别中发挥作用。ΔP1体外聚合研究表明,菌株K122菌毛寡聚的最佳疏水催化剂不利于ΔP1菌毛的形成;使用ΔP1结构的三起点螺旋组装模型表明α-β环和d环阻止体外聚合。
{"title":"The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1.","authors":"Nicholas Bragagnolo, Gerald F Audette","doi":"10.1107/S205979832401132X","DOIUrl":"10.1107/S205979832401132X","url":null,"abstract":"<p><p>The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.3 Å resolution crystal structure of the N-terminally truncated type IV pilin from P. aeruginosa strain P1 (ΔP1) is reported, the first structure of its phylogenetically linked group (group I) to be discussed in the literature. The structure was solved from X-ray diffraction data that were collected 20 years ago with a molecular-replacement search model generated using AlphaFold; the effectiveness of other search models was analyzed. Examination of the high-resolution ΔP1 structure revealed a solvent network that aids in maintaining the fold of the protein. On comparing the sequence and structure of P1 with a variety of type IV pilins, it was observed that there are cases of higher structural similarities between the phylogenetic groups of P. aeruginosa than there are between the same phylogenetic group, indicating that a structural grouping of pilins may be necessary in developing antivirulence drugs and vaccines. These analyses also identified the α-β loop as the most structurally diverse domain of the pilins, which could allow it to serve a role in pilus recognition. Studies of ΔP1 in vitro polymerization demonstrate that the optimal hydrophobic catalyst for the oligomerization of the pilus from strain K122 is not conducive for pilus formation of ΔP1; a model of a three-start helical assembly using the ΔP1 structure indicates that the α-β loop and the D-loop prevent in vitro polymerization.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"834-849"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photosystem II: light-dependent oscillation of ligand composition at its active site. 光系统II:活性位点配体组成的光依赖性振荡。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI: 10.1107/S2059798324011392
Jimin Wang

Recently, the conclusions drawn from crystallographic data about the number of oxygen ligands associated with the CaMn4 cofactor in the oxygen-evolving center (OEC) of Thermosynechococcus vulcanus photosystem II (PSII) have been called into question. Here, using OEC-omit, metal ion-omit and ligand-omit electron-density maps, it is shown that the number of oxygen ligands ranges from three in the functional OEC of monomer B following dark adaption (0F), i.e. in its ground state (PDB entry 6jlj/0F and PDB entry 6jlm/0F), to five for both monomers of PSII in photo-advanced states following exposure to one and two flashes of light. For a significant fraction of the 0F OECs in monomer A, the number is four (PDB entry 6jlj/0F). Following one flash it increases to five (PDB entry 6jlk/1F), where it remains after a second flash (PDB entry 6jlj/2F). Following a third flash (3F), it decreases to three (PDB entry 6jlp/3F), suggesting that an O2 molecule has been produced. These observations suggest a mechanism for the reaction that transforms the O atoms of the water molecules bound at the O3 and O1 sites of the OEC into O2.

最近,从热共生球菌光系统II (PSII)的氧进化中心(OEC)中与CaMn4辅因子相关的氧配体数量的晶体学数据得出的结论受到了质疑。在这里,使用OEC-省略,金属离子-省略和配体-省略电子密度图,表明氧配体的数量范围从暗适应(0F)后单体B的功能OEC中的3个,即在基态(PDB输入6jlj/0F和PDB输入6jlm/0F),到曝光一次和两次闪光后PSII的两个单体在光超前状态下的5个。对于单体a中很大一部分的0F oec,编号为4 (PDB条目6jlj/0F)。在一次闪光之后,它增加到五次(PDB条目6jlj/ 1F),在第二次闪光之后(PDB条目6jlj/2F),它保持不变。在第三次闪光(3F)之后,它减少到3次(PDB输入6jlp/3F),表明O2分子已经产生。这些观察结果提示了一种反应机制,该反应将OEC的O3和O1位点结合的水分子的O原子转化为O2。
{"title":"Photosystem II: light-dependent oscillation of ligand composition at its active site.","authors":"Jimin Wang","doi":"10.1107/S2059798324011392","DOIUrl":"10.1107/S2059798324011392","url":null,"abstract":"<p><p>Recently, the conclusions drawn from crystallographic data about the number of oxygen ligands associated with the CaMn<sub>4</sub> cofactor in the oxygen-evolving center (OEC) of Thermosynechococcus vulcanus photosystem II (PSII) have been called into question. Here, using OEC-omit, metal ion-omit and ligand-omit electron-density maps, it is shown that the number of oxygen ligands ranges from three in the functional OEC of monomer B following dark adaption (0F), i.e. in its ground state (PDB entry 6jlj/0F and PDB entry 6jlm/0F), to five for both monomers of PSII in photo-advanced states following exposure to one and two flashes of light. For a significant fraction of the 0F OECs in monomer A, the number is four (PDB entry 6jlj/0F). Following one flash it increases to five (PDB entry 6jlk/1F), where it remains after a second flash (PDB entry 6jlj/2F). Following a third flash (3F), it decreases to three (PDB entry 6jlp/3F), suggesting that an O<sub>2</sub> molecule has been produced. These observations suggest a mechanism for the reaction that transforms the O atoms of the water molecules bound at the O3 and O1 sites of the OEC into O<sub>2</sub>.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"850-861"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving macromolecular structure refinement with metal-coordination restraints. 利用金属配位约束改善大分子结构的细化。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-01 Epub Date: 2024-12-03 DOI: 10.1107/S2059798324011458
Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov

Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.

金属是许多蛋白质的结构和功能的重要组成部分。然而,由于金属配位几何的复杂性和多样性,对其配位环境的精确建模仍然是一个挑战。为了解决这个问题,提出了一种从晶体学开放数据库中提取和分析配位信息的方法,包括键长和键角。利用这些数据,生成含金属构件的综合描述。特定大分子中特定组分的立体化学信息生成器利用包含该组分的示例PDB/mmCIF文件来解释实际的周围环境。开发并实现了一种匹配过程,将导出的金属结构与坐标几何库中的理想坐标对齐。此外,根据匹配的质量,采用各种策略来编制距离和角度统计数据,以改进大分子结构。开发的方法在一个新的程序MetalCoord中实现,该程序对金属配位几何进行分类和利用。使用PDB中的含金属组件测试了所开发算法的有效性。因此,CCP4单体库中的含金属组分已经更新。更新的单体字典,与衍生的约束相一致,可以用于大多数结构生物学计算,包括大分子晶体学,单粒子低温电镜,甚至分子力学。
{"title":"Improving macromolecular structure refinement with metal-coordination restraints.","authors":"Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov","doi":"10.1107/S2059798324011458","DOIUrl":"10.1107/S2059798324011458","url":null,"abstract":"<p><p>Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"821-833"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peter Main (1939-2024). 彼得·梅因(1939-2024)。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-01 Epub Date: 2024-11-29 DOI: 10.1107/S2059798324010854
Eleanor Dodson, Kathryn Cowtan

Peter Main is remembered.

彼得·梅因被铭记。
{"title":"Peter Main (1939-2024).","authors":"Eleanor Dodson, Kathryn Cowtan","doi":"10.1107/S2059798324010854","DOIUrl":"10.1107/S2059798324010854","url":null,"abstract":"<p><p>Peter Main is remembered.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"862-864"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Everyone is using biological structures, but how does one find the structure(s) one wants? 每个人都在使用生物结构,但是如何找到自己想要的结构呢?
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-01 Epub Date: 2024-12-05 DOI: 10.1107/S2059798324007848
Charles S Bond, Joel L Sussman

A comment on how easy (or difficult) it is to find a stucture of interest and some suggestions on what could be done to start to address the problem.

关于找到一个感兴趣的结构是多么容易(或困难)的评论,以及如何开始解决这个问题的一些建议。
{"title":"Everyone is using biological structures, but how does one find the structure(s) one wants?","authors":"Charles S Bond, Joel L Sussman","doi":"10.1107/S2059798324007848","DOIUrl":"https://doi.org/10.1107/S2059798324007848","url":null,"abstract":"<p><p>A comment on how easy (or difficult) it is to find a stucture of interest and some suggestions on what could be done to start to address the problem.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"80 Pt 12","pages":"819-820"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era. 分子置换中经过处理的预测模型的成功率:对 AlphaFold 时代实验分期的影响。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 Epub Date: 2024-10-03 DOI: 10.1107/S2059798324009380
Ronan M Keegan, Adam J Simpkin, Daniel J Rigden

The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.

AlphaFold2(AF2)和类似工具提供的高精度蛋白质结构预测极大地扩展了分子置换(MR)在晶体结构求解中的应用。许多结构可以使用原始模型、经过处理以去除不可靠部分的结构或拆分成不同结构单元的模型进行常规求解。因此,有多少结构和哪些结构仍然需要使用单波长反常衍射(SAD)等实验相位分析方法是一个未决问题。在此,我们使用大量通过 SAD 解决的 PDB 沉积物来解决这一问题。其中绝大多数(87%)可以使用未经编辑或编辑极少的 AF2 预测来求解。另外 18 个(4%)在使用 Slice'N'Dice 对 AF2 预测进行拆分后,直接产生了 MR,尽管不同的拆分方法成功的案例集略有不同。研究还发现,更多的独特目标可以通过其他建模方法(如 ESMFold,4 个案例)、其他 MR 方法(如 ARCIMBOLDO 和 AMPLE,各 2 个案例)以及使用 AlphaFold-Multimer 或 UniFold 建立多聚物模型(3 个案例)来解决。最终,只有 12 个案例(占 SAD 相位集的 3%)没有通过本文测试的任何形式的 MR,这对实验相位对于大分子结构求解仍然至关重要的案例数量和特征提供了宝贵的提示。
{"title":"The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era.","authors":"Ronan M Keegan, Adam J Simpkin, Daniel J Rigden","doi":"10.1107/S2059798324009380","DOIUrl":"10.1107/S2059798324009380","url":null,"abstract":"<p><p>The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"766-779"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Welcoming two new Co-editors. 欢迎两位新任联合编辑。
IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 Epub Date: 2024-11-06 DOI: 10.1107/S2059798324010350
Charles S Bond, Elspeth F Garman, Randy J Read

Two new Co-editors are welcomed to Acta Cryst. D - Structural Biology.

晶体学报》(Acta Cryst.D - 结构生物学。
{"title":"Welcoming two new Co-editors.","authors":"Charles S Bond, Elspeth F Garman, Randy J Read","doi":"10.1107/S2059798324010350","DOIUrl":"https://doi.org/10.1107/S2059798324010350","url":null,"abstract":"<p><p>Two new Co-editors are welcomed to Acta Cryst. D - Structural Biology.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"80 Pt 11","pages":"765"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Crystallographica. Section D, Structural Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1