Enhanced germination and electrotactic behaviour ofPhytophthora palmivorazoospores in weak electric fields.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2023-07-28 DOI:10.1088/1478-3975/ace751
Eleonora Moratto, Stephen Rothery, Tolga O Bozkurt, Giovanni Sena
{"title":"Enhanced germination and electrotactic behaviour of<i>Phytophthora palmivora</i>zoospores in weak electric fields.","authors":"Eleonora Moratto,&nbsp;Stephen Rothery,&nbsp;Tolga O Bozkurt,&nbsp;Giovanni Sena","doi":"10.1088/1478-3975/ace751","DOIUrl":null,"url":null,"abstract":"<p><p>Soil-dwelling microorganisms use a variety of chemical and physical signals to navigate their environment. Plant roots produce endogenous electric fields which result in characteristic current profiles. Such electrical signatures are hypothesised to be used by pathogens and symbionts to track and colonise plant roots. The oomycete pathogen<i>Phytophthora palmivora</i>generates motile zoospores which swim towards the positive pole when exposed to an external electric field<i>in vitro</i>. Here, we provide a quantitative characterization of their electrotactic behaviour in 3D. We found that a weak electric field (0.7-1.0 V cm<sup>-1</sup>) is sufficient to induce an accumulation of zoospore at the positive pole, without affecting their encystment rate. We also show that the same external electric field increases the zoospore germination rate and orients the germ tube's growth. We conclude that several early stages of the<i>P. palmivora</i>infection cycle are affected by external electric fields. Taken together, our results are compatible with the hypothesis that pathogens use plant endogenous electric fields for host targeting.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ace751","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-dwelling microorganisms use a variety of chemical and physical signals to navigate their environment. Plant roots produce endogenous electric fields which result in characteristic current profiles. Such electrical signatures are hypothesised to be used by pathogens and symbionts to track and colonise plant roots. The oomycete pathogenPhytophthora palmivoragenerates motile zoospores which swim towards the positive pole when exposed to an external electric fieldin vitro. Here, we provide a quantitative characterization of their electrotactic behaviour in 3D. We found that a weak electric field (0.7-1.0 V cm-1) is sufficient to induce an accumulation of zoospore at the positive pole, without affecting their encystment rate. We also show that the same external electric field increases the zoospore germination rate and orients the germ tube's growth. We conclude that several early stages of theP. palmivorainfection cycle are affected by external electric fields. Taken together, our results are compatible with the hypothesis that pathogens use plant endogenous electric fields for host targeting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱电场对棕榈疫霉孢子萌发及电致化行为的影响。
生活在土壤中的微生物利用各种化学和物理信号在环境中穿行。植物根系产生内源电场,产生特征电流分布。这种电特征被假设为病原体和共生体用来追踪和定居植物的根。卵菌病原棕榈疫霉产生可运动的游动孢子,当暴露在体外的外部电场中时,游动孢子向正极游去。在这里,我们在3D中提供了它们的电策略行为的定量表征。我们发现,一个弱电场(0.7-1.0 V cm-1)足以在正极诱导zoospore的积累,而不影响它们的成囊率。我们还发现,相同的外电场能提高游动孢子的发芽率,并使胚管的生长有方向性。我们的结论是,几个早期阶段的p。手掌感染周期受外电场的影响。综上所述,我们的结果与病原体利用植物内源电场靶向宿主的假设是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1