STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2025-01-09 DOI:10.1088/1478-3975/ada862
Bhavna Rajasekaran, Mahendra Sonawane
{"title":"STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges.","authors":"Bhavna Rajasekaran, Mahendra Sonawane","doi":"10.1088/1478-3975/ada862","DOIUrl":null,"url":null,"abstract":"<p><p>Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighbourhood rearrangements over short time and length scales. To address this, we propose the STIPS algorithm (Spatio Temporal Information on Pixel Subsets) to track these events by creating pixel subsets that link trajectories across frames. Using this method, we analysed actin-enriched protrusions, or 'microridges,' which form dynamic labyrinthine patterns on squamous cell epithelial surfaces, mimicking 'active Turing-patterns.' Our results reveal two distinct actomyosin-based rhythmic dynamics in neighbouring cells: a common pulsatile mechanism between 2 and 6.25 minutes period governing both fusion and fission events contributing to pattern maintenance, and cell area pulses predominantly exhibiting 10-minutes period.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ada862","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighbourhood rearrangements over short time and length scales. To address this, we propose the STIPS algorithm (Spatio Temporal Information on Pixel Subsets) to track these events by creating pixel subsets that link trajectories across frames. Using this method, we analysed actin-enriched protrusions, or 'microridges,' which form dynamic labyrinthine patterns on squamous cell epithelial surfaces, mimicking 'active Turing-patterns.' Our results reveal two distinct actomyosin-based rhythmic dynamics in neighbouring cells: a common pulsatile mechanism between 2 and 6.25 minutes period governing both fusion and fission events contributing to pattern maintenance, and cell area pulses predominantly exhibiting 10-minutes period.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges. Quantum features of the transport through ion channels in the soft knock-on model. Emergence of temporal noise hierarchy in co-regulated genes of multi-output feed-forward loop. Theory of epigenetic switching due to stochastic histone mark loss during DNA replication. A role of fear on diseased food web model with multiple functional response.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1