Shane G Downes, Sean Doyle, Gary W Jones, Rebecca A Owens
{"title":"Gliotoxin and related metabolites as zinc chelators: implications and exploitation to overcome antimicrobial resistance.","authors":"Shane G Downes, Sean Doyle, Gary W Jones, Rebecca A Owens","doi":"10.1042/EBC20220222","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a major global problem and threat to humanity. The search for new antibiotics is directed towards targeting of novel microbial systems and enzymes, as well as augmenting the activity of pre-existing antimicrobials. Sulphur-containing metabolites (e.g., auranofin and bacterial dithiolopyrrolones [e.g., holomycin]) and Zn2+-chelating ionophores (PBT2) have emerged as important antimicrobial classes. The sulphur-containing, non-ribosomal peptide gliotoxin, biosynthesised by Aspergillus fumigatus and other fungi exhibits potent antimicrobial activity, especially in the dithiol form (dithiol gliotoxin; DTG). Specifically, it has been revealed that deletion of the enzymes gliotoxin oxidoreductase GliT, bis-thiomethyltransferase GtmA or the transporter GliA dramatically sensitise A. fumigatus to gliotoxin presence. Indeed, the double deletion strain A. fumigatus ΔgliTΔgtmA is especially sensitive to gliotoxin-mediated growth inhibition, which can be reversed by Zn2+ presence. Moreover, DTG is a Zn2+ chelator which can eject zinc from enzymes and inhibit activity. Although multiple studies have demonstrated the potent antibacterial effect of gliotoxin, no mechanistic details are available. Interestingly, reduced holomycin can inhibit metallo-β-lactamases. Since holomycin and gliotoxin can chelate Zn2+, resulting in metalloenzyme inhibition, we propose that this metal-chelating characteristic of these metabolites requires immediate investigation to identify new antibacterial drug targets or to augment the activity of existing antimicrobials. Given that (i) gliotoxin has been shown in vitro to significantly enhance vancomycin activity against Staphylococcus aureus, and (ii) that it has been independently proposed as an ideal probe to dissect the central 'Integrator' role of Zn2+ in bacteria - we contend such studies are immediately undertaken to help address AMR.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 5","pages":"769-780"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500201/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220222","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Antimicrobial resistance (AMR) is a major global problem and threat to humanity. The search for new antibiotics is directed towards targeting of novel microbial systems and enzymes, as well as augmenting the activity of pre-existing antimicrobials. Sulphur-containing metabolites (e.g., auranofin and bacterial dithiolopyrrolones [e.g., holomycin]) and Zn2+-chelating ionophores (PBT2) have emerged as important antimicrobial classes. The sulphur-containing, non-ribosomal peptide gliotoxin, biosynthesised by Aspergillus fumigatus and other fungi exhibits potent antimicrobial activity, especially in the dithiol form (dithiol gliotoxin; DTG). Specifically, it has been revealed that deletion of the enzymes gliotoxin oxidoreductase GliT, bis-thiomethyltransferase GtmA or the transporter GliA dramatically sensitise A. fumigatus to gliotoxin presence. Indeed, the double deletion strain A. fumigatus ΔgliTΔgtmA is especially sensitive to gliotoxin-mediated growth inhibition, which can be reversed by Zn2+ presence. Moreover, DTG is a Zn2+ chelator which can eject zinc from enzymes and inhibit activity. Although multiple studies have demonstrated the potent antibacterial effect of gliotoxin, no mechanistic details are available. Interestingly, reduced holomycin can inhibit metallo-β-lactamases. Since holomycin and gliotoxin can chelate Zn2+, resulting in metalloenzyme inhibition, we propose that this metal-chelating characteristic of these metabolites requires immediate investigation to identify new antibacterial drug targets or to augment the activity of existing antimicrobials. Given that (i) gliotoxin has been shown in vitro to significantly enhance vancomycin activity against Staphylococcus aureus, and (ii) that it has been independently proposed as an ideal probe to dissect the central 'Integrator' role of Zn2+ in bacteria - we contend such studies are immediately undertaken to help address AMR.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.