首页 > 最新文献

Essays in biochemistry最新文献

英文 中文
Emerging strategies in lymph node-targeted nano-delivery systems for tumor immunotherapy.
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-28 DOI: 10.1042/EBC20253008
Yaoli Zhao, Muzi Tian, Xin Tong, Xiangliang Yang, Lu Gan, Tuying Yong

The emergence of immunotherapy has led to the clinical approval of several related drugs. However, their efficacy against solid tumors remains limited. As the hub of immune activation, lymph nodes (LNs) play a critical role in tumor immunotherapy by initiating and amplifying immune responses. Nevertheless, the intricate physiological structure and barriers within LNs, combined with the immunosuppressive microenvironment induced by tumor cells, significantly impede the therapeutic efficacy of immunotherapy. Engineered nanoparticles (NPs) have shown great potential in overcoming these challenges by facilitating targeted drug transport to LNs and directly or indirectly activating T cells. This review systematically examines the structural features of LNs, key factors influencing the targeting efficiency of NPs, and current strategies for remodeling the immunosuppressive microenvironment of LNs. Additionally, it discusses future opportunities for optimizing NPs to enhance tumor immunotherapy, addressing challenges in clinical translation and safety evaluation.

{"title":"Emerging strategies in lymph node-targeted nano-delivery systems for tumor immunotherapy.","authors":"Yaoli Zhao, Muzi Tian, Xin Tong, Xiangliang Yang, Lu Gan, Tuying Yong","doi":"10.1042/EBC20253008","DOIUrl":"https://doi.org/10.1042/EBC20253008","url":null,"abstract":"<p><p>The emergence of immunotherapy has led to the clinical approval of several related drugs. However, their efficacy against solid tumors remains limited. As the hub of immune activation, lymph nodes (LNs) play a critical role in tumor immunotherapy by initiating and amplifying immune responses. Nevertheless, the intricate physiological structure and barriers within LNs, combined with the immunosuppressive microenvironment induced by tumor cells, significantly impede the therapeutic efficacy of immunotherapy. Engineered nanoparticles (NPs) have shown great potential in overcoming these challenges by facilitating targeted drug transport to LNs and directly or indirectly activating T cells. This review systematically examines the structural features of LNs, key factors influencing the targeting efficiency of NPs, and current strategies for remodeling the immunosuppressive microenvironment of LNs. Additionally, it discusses future opportunities for optimizing NPs to enhance tumor immunotherapy, addressing challenges in clinical translation and safety evaluation.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143751768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of bacterial outer membrane vesicles in tumor vaccine: characteristics, advancements, and future directions.
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-28 DOI: 10.1042/EBC20253004
Yizhe Yang, Yumin Wu

Bacterial outer membrane vesicles (OMVs), naturally released by Gram-negative bacteria, are a type of lipid bilayer nanoparticles containing many components found within the parent bacterium. Despite OMVs were first considered mere by-products of bacterial growth, recent studies have shown them as a highly adaptable platform for tumor vaccine. Here, we first demonstrate the biogenesis of OMVs, then review the strong immunogenicity of OMVs as an immune adjuvant in tumor vaccine and its excellent vaccine delivery capability, and finally discuss OMVs' engineering potentials through summarizing recent scientific advancements in genetic engineering, chemical modification, and nanotechnology. We also point out the clinical trials and future challenges of OMV-based vaccine. Overall, this review offers valuable insights into cancer immunotherapy, providing a roadmap for leveraging OMVs as a versatile platform for next-generation cancer vaccines.

{"title":"Potential of bacterial outer membrane vesicles in tumor vaccine: characteristics, advancements, and future directions.","authors":"Yizhe Yang, Yumin Wu","doi":"10.1042/EBC20253004","DOIUrl":"https://doi.org/10.1042/EBC20253004","url":null,"abstract":"<p><p>Bacterial outer membrane vesicles (OMVs), naturally released by Gram-negative bacteria, are a type of lipid bilayer nanoparticles containing many components found within the parent bacterium. Despite OMVs were first considered mere by-products of bacterial growth, recent studies have shown them as a highly adaptable platform for tumor vaccine. Here, we first demonstrate the biogenesis of OMVs, then review the strong immunogenicity of OMVs as an immune adjuvant in tumor vaccine and its excellent vaccine delivery capability, and finally discuss OMVs' engineering potentials through summarizing recent scientific advancements in genetic engineering, chemical modification, and nanotechnology. We also point out the clinical trials and future challenges of OMV-based vaccine. Overall, this review offers valuable insights into cancer immunotherapy, providing a roadmap for leveraging OMVs as a versatile platform for next-generation cancer vaccines.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143751770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy for hypertensive end-organ damage: a new therapeutic strategy.
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-25 DOI: 10.1042/EBC20243000
Zhiyang Xu, Haisheng Yu, Rulin Zhuang, Qin Fan

Hypertension represents a highly prevalent chronic condition and stands among the foremost contributors to premature mortality on a global scale. Its etiopathogenesis is intricate and multifaceted, being shaped by a diverse array of elements such as age, genetic predisposition, and activation of the neuroendocrine apparatus. Mounting evidence has shed light on the significant part that autoimmune responses play in hypertension and the ensuing damage to end organs. Virtually all varieties of immune cells, spanning both innate and adaptive immune compartments, exhibit a close correlation with the progression of hypertension. These immune cells infiltrate the kidney and vascular mesenchyme, subsequently discharging potent cytokines, reactive oxygen species, and metalloproteinases. This cascade of events can affect the functionality of local blood vessels and potentially precipitate adverse structural and functional alterations in crucial organs like the heart and kidney. In recent times, the management of end-organ damage in hypertension has emerged as a pivotal scientific focus. A multitude of researchers are actively engaged in probing efficacious intervention regimens, among which immunotherapy strategies hold considerable promise and anticipation as a prospective avenue.

{"title":"Immunotherapy for hypertensive end-organ damage: a new therapeutic strategy.","authors":"Zhiyang Xu, Haisheng Yu, Rulin Zhuang, Qin Fan","doi":"10.1042/EBC20243000","DOIUrl":"https://doi.org/10.1042/EBC20243000","url":null,"abstract":"<p><p>Hypertension represents a highly prevalent chronic condition and stands among the foremost contributors to premature mortality on a global scale. Its etiopathogenesis is intricate and multifaceted, being shaped by a diverse array of elements such as age, genetic predisposition, and activation of the neuroendocrine apparatus. Mounting evidence has shed light on the significant part that autoimmune responses play in hypertension and the ensuing damage to end organs. Virtually all varieties of immune cells, spanning both innate and adaptive immune compartments, exhibit a close correlation with the progression of hypertension. These immune cells infiltrate the kidney and vascular mesenchyme, subsequently discharging potent cytokines, reactive oxygen species, and metalloproteinases. This cascade of events can affect the functionality of local blood vessels and potentially precipitate adverse structural and functional alterations in crucial organs like the heart and kidney. In recent times, the management of end-organ damage in hypertension has emerged as a pivotal scientific focus. A multitude of researchers are actively engaged in probing efficacious intervention regimens, among which immunotherapy strategies hold considerable promise and anticipation as a prospective avenue.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"0 0","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges.
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-07 DOI: 10.1042/EBC20253006
Beilei Yue, Wenbo Gao, Jonathan F Lovell, Honglin Jin, Jing Huang

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a crucial component of the host's innate immunity and plays a central role in detecting cytosolic double-stranded DNA from endogenous and exogenous sources. Upon activation, cGAS synthesizes cGAMP, which binds to STING, triggering a cascade of immune responses, including the production of type I interferons and pro-inflammatory cytokines. In the context of cancers, the cGAS-STING pathway can exert dual roles: on the one hand, it promotes anti-tumor immunity by enhancing antigen presentation, stimulating T-cell responses, and inducing direct tumor cell apoptosis. On the other hand, chronic activation, particularly in tumors with chromosomal instability, can lead to immune suppression and tumor progression. Persistent cGAS-STING signaling results in the up-regulation of immune checkpoint molecules such as PD-L1, contributing to immune evasion and metastasis. Consequently, anti-tumor strategies targeting the cGAS-STING pathway have to consider the balance of immune activation and the immune tolerance caused by chronic activation. This review explores the mechanisms underlying both the anti-tumor and protumor roles of the cGAS-STING pathway, with a focus on potential therapeutic approaches, and the challenges faced in their clinical application, along with corresponding solutions.

{"title":"The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges.","authors":"Beilei Yue, Wenbo Gao, Jonathan F Lovell, Honglin Jin, Jing Huang","doi":"10.1042/EBC20253006","DOIUrl":"https://doi.org/10.1042/EBC20253006","url":null,"abstract":"<p><p>The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a crucial component of the host's innate immunity and plays a central role in detecting cytosolic double-stranded DNA from endogenous and exogenous sources. Upon activation, cGAS synthesizes cGAMP, which binds to STING, triggering a cascade of immune responses, including the production of type I interferons and pro-inflammatory cytokines. In the context of cancers, the cGAS-STING pathway can exert dual roles: on the one hand, it promotes anti-tumor immunity by enhancing antigen presentation, stimulating T-cell responses, and inducing direct tumor cell apoptosis. On the other hand, chronic activation, particularly in tumors with chromosomal instability, can lead to immune suppression and tumor progression. Persistent cGAS-STING signaling results in the up-regulation of immune checkpoint molecules such as PD-L1, contributing to immune evasion and metastasis. Consequently, anti-tumor strategies targeting the cGAS-STING pathway have to consider the balance of immune activation and the immune tolerance caused by chronic activation. This review explores the mechanisms underlying both the anti-tumor and protumor roles of the cGAS-STING pathway, with a focus on potential therapeutic approaches, and the challenges faced in their clinical application, along with corresponding solutions.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered bacteria and bacterial derivatives as advanced therapeutics for inflammatory bowel disease.
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-27 DOI: 10.1042/EBC20253003
Jingyuan Wu, Wanlin Ye, Jie Yu, Tuoyu Zhou, Nuo Zhou, Dennis K P Ng, Zhaoting Li

Inflammatory bowel disease (IBD), a chronic and relapsing-remitting condition, is inadequately managed by conventional therapies that often lack targeting specificity and carry significant side effects, particularly failing to address intestinal barrier repair and microbial balance. Probiotics, with their strong colonization capabilities, present a novel approach to drug delivery. Various engineering strategies have been developed to enhance the targeting ability of probiotics to inflammation sites, enabling precise delivery or in situ synthesis of therapeutic molecules to expand their multifunctional potential. This review discusses the recent advancements in bacterial modifications, including surface physico-chemical and biological coating, genetic engineering, outer membrane vesicles, minicells, and bacterial ghosts, all of which can enhance therapeutic localization. We also outline critical preclinical considerations, such as delivery frequency, systemic distribution, immune evasion, and gene contamination risks, for clinical translation. These engineered bacteria and bacterial derivatives hold great promise for personalized and sustained IBD treatments, providing a new frontier for therapy tailored to the complex inflammatory environment of IBD.

{"title":"Engineered bacteria and bacterial derivatives as advanced therapeutics for inflammatory bowel disease.","authors":"Jingyuan Wu, Wanlin Ye, Jie Yu, Tuoyu Zhou, Nuo Zhou, Dennis K P Ng, Zhaoting Li","doi":"10.1042/EBC20253003","DOIUrl":"https://doi.org/10.1042/EBC20253003","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), a chronic and relapsing-remitting condition, is inadequately managed by conventional therapies that often lack targeting specificity and carry significant side effects, particularly failing to address intestinal barrier repair and microbial balance. Probiotics, with their strong colonization capabilities, present a novel approach to drug delivery. Various engineering strategies have been developed to enhance the targeting ability of probiotics to inflammation sites, enabling precise delivery or in situ synthesis of therapeutic molecules to expand their multifunctional potential. This review discusses the recent advancements in bacterial modifications, including surface physico-chemical and biological coating, genetic engineering, outer membrane vesicles, minicells, and bacterial ghosts, all of which can enhance therapeutic localization. We also outline critical preclinical considerations, such as delivery frequency, systemic distribution, immune evasion, and gene contamination risks, for clinical translation. These engineered bacteria and bacterial derivatives hold great promise for personalized and sustained IBD treatments, providing a new frontier for therapy tailored to the complex inflammatory environment of IBD.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the biochemistry of hormones - message in a bottle.
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-06 DOI: 10.1042/EBC20240039
Dominic C Y Lai, Jonathan Wolf Mueller

Hormones play pivotal roles in our well-being, and even more so in times of stress or disease. They determine body composition and govern reproductive processes. Hormonal compounds tend to be evolutionarily very old compounds, but only coevolved receptor systems make up powerful biological signals. We will discuss what makes some metabolites good building materials for hormones and how information may be encoded, using these scaffolds. Starting with hormone biosynthesis and regulated release from secreting cells, we will look at different stages of the whole hormone signaling process: the distribution of the hormonal "message-in-a-bottle" throughout the body, the passing of some hormones through membranes, and pre-receptor metabolism. Binding to different classes of receptors is not the end of hormone signaling, but the beginning of a second phase of signaling via second messengers, before hormonal messages are switched off again. Studying hormone biochemistry will produce exciting new findings in the future.

{"title":"Understanding the biochemistry of hormones - message in a bottle.","authors":"Dominic C Y Lai, Jonathan Wolf Mueller","doi":"10.1042/EBC20240039","DOIUrl":"https://doi.org/10.1042/EBC20240039","url":null,"abstract":"<p><p>Hormones play pivotal roles in our well-being, and even more so in times of stress or disease. They determine body composition and govern reproductive processes. Hormonal compounds tend to be evolutionarily very old compounds, but only coevolved receptor systems make up powerful biological signals. We will discuss what makes some metabolites good building materials for hormones and how information may be encoded, using these scaffolds. Starting with hormone biosynthesis and regulated release from secreting cells, we will look at different stages of the whole hormone signaling process: the distribution of the hormonal \"message-in-a-bottle\" throughout the body, the passing of some hormones through membranes, and pre-receptor metabolism. Binding to different classes of receptors is not the end of hormone signaling, but the beginning of a second phase of signaling via second messengers, before hormonal messages are switched off again. Studying hormone biochemistry will produce exciting new findings in the future.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 1","pages":"1-18"},"PeriodicalIF":5.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phage diversity in One Health. 同一健康中的噬菌体多样性
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-17 DOI: 10.1042/EBC20240012
Hannah V Pye, Revathy Krishnamurthi, Ryan Cook, Evelien M Adriaenssens

One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.

一体健康 "旨在将人类、动物和环境研究结合起来,实现人人享有最佳健康。噬菌体(噬菌体)是一种能杀死细菌的病毒,将其用作环境中的生物控制剂以及动物和人类医学的治疗剂将有助于实现 "一个健康 "目标。在此,我们对过去 5 年中用于 "一体健康 "的噬菌体的多样性进行了评估,并将其置于全球噬菌体多样性的背景之下。我们的综述显示,98% 应用于 "一体健康 "的噬菌体属于 Caudoviricetes 类,而 85% 的测序噬菌体属于该类。迄今为止,只有三种 Riboviria 界的 RNA噬菌体被用于环境生物控制和人类治疗。这说明商业上使用的噬菌体和用于噬菌体治疗的噬菌体缺乏多样性,这可能是由于分离噬菌体和选择应用噬菌体的方法存在偏差。噬菌体作为生物控制剂和疗法的未来将取决于能否分离出基因新颖的dsDNA噬菌体,以及能否改进分离ssDNA和RNA噬菌体的工作,因为它们的潜力目前被低估了。噬菌体具有减轻抗菌药耐药性负担的潜力,但我们对自然界中噬菌体的巨大多样性利用不足。需要对噬菌体基因组学和替代培养方法进行更多研究,以充分了解噬菌体、其宿主和环境中其他生物之间的复杂关系,从而实现所有人的最佳健康。
{"title":"Phage diversity in One Health.","authors":"Hannah V Pye, Revathy Krishnamurthi, Ryan Cook, Evelien M Adriaenssens","doi":"10.1042/EBC20240012","DOIUrl":"10.1042/EBC20240012","url":null,"abstract":"<p><p>One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"607-619"},"PeriodicalIF":5.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A roadmap of isolating and investigating bacteriophage infecting human gut anaerobes. 分离和研究感染人类肠道厌氧菌的噬菌体的路线图。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-17 DOI: 10.1042/EBC20240116
Cong Liu, Bo Xing, Zhuoran Li, Junhua Li, Minfeng Xiao

Bacteriophages, viruses that infect bacteria, play a crucial role in manipulating the gut microbiome, with implications for human health and disease. Despite the vast amount of data available on the human gut virome, the number of cultured phages that infect human gut bacteria-particularly obligate anaerobes-remains strikingly limited. Here, we summarize the resources and basic characteristics of phages that infect the human gut obligate anaerobe. We review various methods for isolating these phages and suggest a strategy for their isolation. Additionally, we outline their impact on the field of viral biology, their interactions with bacteria and humans, and their potential for disease intervention. Finally, we discuss the value and prospects of research on these phages, providing a comprehensive 'Roadmap' that sheds light on the 'dark matter' of phages that infect human gut obligate anaerobes.

噬菌体是一种感染细菌的病毒,在操纵肠道微生物群方面起着至关重要的作用,对人类健康和疾病有影响。尽管有大量关于人类肠道病毒组的数据,但感染人类肠道细菌的培养噬菌体的数量——尤其是专性厌氧菌——仍然非常有限。本文综述了侵染人类肠道专性厌氧菌的噬菌体的来源和基本特征。我们回顾了分离这些噬菌体的各种方法,并提出了一种分离它们的策略。此外,我们概述了它们对病毒生物学领域的影响,它们与细菌和人类的相互作用,以及它们对疾病干预的潜力。最后,我们讨论了这些噬菌体研究的价值和前景,提供了一个全面的“路线图”,揭示了感染人类肠道专性厌氧菌的噬菌体的“暗物质”。
{"title":"A roadmap of isolating and investigating bacteriophage infecting human gut anaerobes.","authors":"Cong Liu, Bo Xing, Zhuoran Li, Junhua Li, Minfeng Xiao","doi":"10.1042/EBC20240116","DOIUrl":"10.1042/EBC20240116","url":null,"abstract":"<p><p>Bacteriophages, viruses that infect bacteria, play a crucial role in manipulating the gut microbiome, with implications for human health and disease. Despite the vast amount of data available on the human gut virome, the number of cultured phages that infect human gut bacteria-particularly obligate anaerobes-remains strikingly limited. Here, we summarize the resources and basic characteristics of phages that infect the human gut obligate anaerobe. We review various methods for isolating these phages and suggest a strategy for their isolation. Additionally, we outline their impact on the field of viral biology, their interactions with bacteria and humans, and their potential for disease intervention. Finally, we discuss the value and prospects of research on these phages, providing a comprehensive 'Roadmap' that sheds light on the 'dark matter' of phages that infect human gut obligate anaerobes.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"593-605"},"PeriodicalIF":5.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of phage-plasmids and their impact on microbial communities. 噬菌体质粒的特性及其对微生物群落的影响。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-17 DOI: 10.1042/EBC20240014
Ruweyda Sayid, Anne W M van den Hurk, Daniela Rothschild-Rodriguez, Hilde Herrema, Patrick A de Jonge, Franklin L Nobrega

Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities.

细菌携带各种外来遗传因子,最显著的是质粒和噬菌体。历史上,这两个阶层被认为是分开的,但最近的研究表明,它们之间有相当大的相互作用。噬菌体质粒(Phage-plasmids, P-Ps)具有噬菌体和质粒的双重特性,既可以作为质粒存在于细菌宿主的染色体外,又可以作为噬菌体感染和裂解细菌。这种双重功能使P-Ps能够利用噬菌体和质粒的传播模式,促进遗传物质(包括抗生素耐药性和毒力基因)在细菌种群中的快速传播。此外,已经发现P-Ps编码毒素-抗毒素和CRISPR-Cas适应性免疫系统,这些系统可以增强细菌在压力下的生存能力,并提供对其他外来遗传因子的免疫力。尽管关于P-Ps的文献越来越多,但我们对它们的生态作用和环境患病率的理解仍然存在很大差距。本综述旨在综合现有知识,并确定对P-Ps对微生物群落的影响的研究空白。
{"title":"Characteristics of phage-plasmids and their impact on microbial communities.","authors":"Ruweyda Sayid, Anne W M van den Hurk, Daniela Rothschild-Rodriguez, Hilde Herrema, Patrick A de Jonge, Franklin L Nobrega","doi":"10.1042/EBC20240014","DOIUrl":"10.1042/EBC20240014","url":null,"abstract":"<p><p>Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"583-592"},"PeriodicalIF":5.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specificity and diversity of Klebsiella pneumoniae phage-encoded capsule depolymerases. 肺炎克雷伯菌噬菌体编码胶囊解聚合酶的特异性和多样性。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-17 DOI: 10.1042/EBC20240015
Max J Cheetham, Yunlong Huo, Maria Stroyakovski, Li Cheng, Daniel Wan, Anne Dell, Joanne M Santini

Klebsiella pneumoniae is an opportunistic pathogen with significant clinical relevance. K. pneumoniae-targeting bacteriophages encode specific polysaccharide depolymerases with the ability to selectively degrade the highly varied protective capsules, allowing for access to the bacterial cell wall. Bacteriophage depolymerases have been proposed as novel antimicrobials to combat the rise of multidrug-resistant K. pneumoniae strains. These enzymes display extraordinary diversity, and are key determinants of phage host range, however with limited data available our current knowledge of their mechanisms and ability to predict their efficacy is limited. Insight into the resolved structures of Klebsiella-specific capsule depolymerases reveals varied catalytic mechanisms, with the intra-chain cleavage mechanism providing opportunities for recombinant protein engineering. A detailed comparison of the 58 characterised depolymerases hints at structural and mechanistic patterns, such as the conservation of key domains for substrate recognition and phage tethering, as well as diversity within groups of depolymerases that target the same substrate. Another way to understand depolymerase specificity is by analyzing the targeted capsule structures, as these may share similarities recognizable by bacteriophage depolymerases, leading to broader substrate specificities. Although we have only begun to explore the complexity of Klebsiella capsule depolymerases, further research is essential to thoroughly characterise these enzymes. This will be crucial for understanding their mechanisms, predicting their efficacy, and engineering optimized enzymes for therapeutic applications.

肺炎克雷伯菌是一种具有重要临床意义的机会致病菌。针对肺炎克雷伯菌的噬菌体编码特异性多糖解聚合酶,具有选择性地降解高度多样化的保护性胶囊的能力,从而允许进入细菌细胞壁。噬菌体解聚合酶已被提出作为对抗多药耐药肺炎克雷伯菌菌株上升的新型抗菌剂。这些酶表现出非凡的多样性,是噬菌体宿主范围的关键决定因素,然而,由于现有数据有限,我们目前对其机制的了解和预测其功效的能力有限。对克雷伯菌特异性胶囊解聚合酶的分解结构的深入研究揭示了多种催化机制,其中链内裂解机制为重组蛋白工程提供了机会。对58种特征解聚合酶的详细比较暗示了结构和机制模式,例如底物识别和噬菌体系固的关键结构域的保护,以及针对相同底物的解聚合酶组内的多样性。了解解聚合酶特异性的另一种方法是分析目标胶囊结构,因为这些结构可能具有噬菌体解聚合酶可识别的相似性,从而导致更广泛的底物特异性。虽然我们才刚刚开始探索克雷伯菌胶囊解聚合酶的复杂性,但进一步的研究对于彻底表征这些酶是必不可少的。这对于理解它们的机制、预测它们的功效以及设计用于治疗应用的优化酶至关重要。
{"title":"Specificity and diversity of Klebsiella pneumoniae phage-encoded capsule depolymerases.","authors":"Max J Cheetham, Yunlong Huo, Maria Stroyakovski, Li Cheng, Daniel Wan, Anne Dell, Joanne M Santini","doi":"10.1042/EBC20240015","DOIUrl":"10.1042/EBC20240015","url":null,"abstract":"<p><p>Klebsiella pneumoniae is an opportunistic pathogen with significant clinical relevance. K. pneumoniae-targeting bacteriophages encode specific polysaccharide depolymerases with the ability to selectively degrade the highly varied protective capsules, allowing for access to the bacterial cell wall. Bacteriophage depolymerases have been proposed as novel antimicrobials to combat the rise of multidrug-resistant K. pneumoniae strains. These enzymes display extraordinary diversity, and are key determinants of phage host range, however with limited data available our current knowledge of their mechanisms and ability to predict their efficacy is limited. Insight into the resolved structures of Klebsiella-specific capsule depolymerases reveals varied catalytic mechanisms, with the intra-chain cleavage mechanism providing opportunities for recombinant protein engineering. A detailed comparison of the 58 characterised depolymerases hints at structural and mechanistic patterns, such as the conservation of key domains for substrate recognition and phage tethering, as well as diversity within groups of depolymerases that target the same substrate. Another way to understand depolymerase specificity is by analyzing the targeted capsule structures, as these may share similarities recognizable by bacteriophage depolymerases, leading to broader substrate specificities. Although we have only begun to explore the complexity of Klebsiella capsule depolymerases, further research is essential to thoroughly characterise these enzymes. This will be crucial for understanding their mechanisms, predicting their efficacy, and engineering optimized enzymes for therapeutic applications.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"661-677"},"PeriodicalIF":5.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Essays in biochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1