New insights into balancing wound healing and scarless skin repair.

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Journal of Tissue Engineering Pub Date : 2023-01-01 DOI:10.1177/20417314231185848
Shengxi Zhou, Mengbo Xie, Jingjing Su, Bingjie Cai, Jingan Li, Kun Zhang
{"title":"New insights into balancing wound healing and scarless skin repair.","authors":"Shengxi Zhou,&nbsp;Mengbo Xie,&nbsp;Jingjing Su,&nbsp;Bingjie Cai,&nbsp;Jingan Li,&nbsp;Kun Zhang","doi":"10.1177/20417314231185848","DOIUrl":null,"url":null,"abstract":"<p><p>Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/05/10.1177_20417314231185848.PMC10388637.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314231185848","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 4

Abstract

Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平衡伤口愈合和无疤痕皮肤修复的新见解。
烧伤、创面、擦伤和手术后皮肤损伤所造成的疤痕对患者的生理和心理都有严重的影响。近年来,无疤痕创面修复的研究得到了很大的发展。然而,了解伤口愈合的复杂机制,其中各种细胞,细胞因子和机械力相互作用,对于开发一种可以实现无疤痕伤口愈合的治疗方法至关重要。因此,本文就创伤的类型、愈合过程中瘢痕的形成机制、创伤愈合与瘢痕预防双重考虑的研究现状、无瘢痕创面修复的治疗策略等方面进行综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
期刊最新文献
EVs from cells at the early stages of chondrogenesis delivered by injectable SIS dECM promote cartilage regeneration. Dynamic three-dimensional coculture model: The future of tissue engineering applied to the peripheral nervous system. Oral delivery of pH-sensitive nanoparticles loaded Celastrol targeting the inflammatory colons to treat ulcerative colitis. Two-dimensional vascularized liver organoid on extracellular matrix with defined stiffness for modeling fibrotic and normal tissues. Bioengineered cartilaginous grafts for repairing segmental mandibular defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1