首页 > 最新文献

Journal of Tissue Engineering最新文献

英文 中文
EVs from cells at the early stages of chondrogenesis delivered by injectable SIS dECM promote cartilage regeneration. 通过注射 SIS dECM 从软骨形成早期阶段的细胞中提取的 EV 可促进软骨再生。
IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-17 eCollection Date: 2024-01-01 DOI: 10.1177/20417314241268189
Weilai Zhu, Jiaying Shi, Bowen Weng, Zhenger Zhou, Xufeng Mao, Senhao Pan, Jing Peng, Chi Zhang, Haijiao Mao, Mei Li, Jiyuan Zhao

Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.

关节软骨缺损治疗在临床上仍不尽如人意。直接植入细胞面临着致瘤性、免疫原性和不可控性等挑战。基于细胞外囊泡(EVs)的无细胞疗法成为软骨再生的一种前景广阔的替代方法。尽管来自不同细胞的细胞外囊泡表现出不同的特性和作用。这项研究的目的是发现软骨生成过程中来自细胞的EVs对软骨再生的功能。本研究以骨髓间充质干细胞(BMSCs)-EVs、幼年软骨细胞-EVs和成年软骨细胞-EVs代表不同分化阶段的EVs,并加入成纤维细胞-EVs作为周围信号进行比较。成纤维细胞-EVs 对软骨形成的影响最差。幼年软骨细胞-EVs 和成年软骨细胞-EVs 对软骨分化的影响与 BMSCs-EVs 相当,而 BMSCs-EVs 对细胞增殖和迁移的影响最好。此外,BMSCs 分泌的 EVs 量远高于软骨细胞。研究人员从小肠粘膜下层(SIS)中提取了一种可注射的脱细胞细胞外基质(dECM)水凝胶,作为具有天然基质微环境的EVs递送平台。在大鼠模型中,将负载有 BMSCs-EVs 的 SIS 水凝胶注入关节软骨缺损处,可显著促进软骨在体内的再生。此外,蛋白质组学研究发现,BMSCs-EVs 能特异性地上调多种代谢和生物合成过程,这可能是其潜在的机制。因此,负载有BMSCs-EVs的可注射SIS水凝胶可能是治疗关节软骨缺损的一种很有前景的方法。
{"title":"EVs from cells at the early stages of chondrogenesis delivered by injectable SIS dECM promote cartilage regeneration.","authors":"Weilai Zhu, Jiaying Shi, Bowen Weng, Zhenger Zhou, Xufeng Mao, Senhao Pan, Jing Peng, Chi Zhang, Haijiao Mao, Mei Li, Jiyuan Zhao","doi":"10.1177/20417314241268189","DOIUrl":"10.1177/20417314241268189","url":null,"abstract":"<p><p>Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic three-dimensional coculture model: The future of tissue engineering applied to the peripheral nervous system. 动态三维细胞培养模型:应用于周围神经系统的组织工程的未来。
IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-13 eCollection Date: 2024-01-01 DOI: 10.1177/20417314241265916
William Choinière, Ève Petit, Vincent Monfette, Samuel Pelletier, Catherine Godbout-Lavoie, Marc-Antoine Lauzon

Traumatic injuries to the peripheral nervous system (PNI) can lead to severe consequences such as paralysis. Unfortunately, current treatments rarely allow for satisfactory functional recovery. The high healthcare costs associated with PNS injuries, worker disability, and low patient satisfaction press for alternative solutions that surpass current standards. For the treatment of injuries with a deficit of less than 30 mm to bridge, the use of synthetic nerve conduits (NGC) is favored. However, to develop such promising therapeutic strategies, in vitro models that more faithfully mimic nerve physiology are needed. The absence of a clinically scaled model with essential elements such as a three-dimension environment and dynamic coculture has hindered progress in this field. The presented research focuses on the development of an in vitro coculture model of the peripheral nervous system (PNS) involving the use of functional biomaterial which microstructure replicates nerve topography. Initially, the behavior of neuron-derived cell lines (N) and Schwann cells (SC) in contact with a short section of biomaterial (5 mm) was studied. Subsequent investigations, using fluorescent markers and survival assays, demonstrated the synergistic effects of coculture. These optimized parameters were then applied to longer biomaterials (30 mm), equivalent to clinically used NGC. The results obtained demonstrated the possibility of maintaining an extended coculture of SC and N over a 7-day period on a clinically scaled biomaterial, observing some functionality. In the long term, the knowledge gained from this work will contribute to a better understanding of the PNS regeneration process and promote the development of future therapeutic approaches while reducing reliance on animal experimentation. This model can be used for drug screening and adapted for personalized medicine trials. Ultimately, this work fills a critical gap in current research, providing a transformative approach to study and advance treatments for PNS injuries.

外周神经系统(PNI)的外伤可导致瘫痪等严重后果。遗憾的是,目前的治疗方法很少能使功能得到令人满意的恢复。与外周神经系统损伤、工人残疾和患者满意度低相关的医疗费用高昂,促使人们寻求超越现有标准的替代解决方案。在治疗桥接缺损小于 30 毫米的损伤时,合成神经导管(NGC)的使用受到青睐。然而,要开发出这种前景广阔的治疗策略,还需要更忠实地模拟神经生理学的体外模型。由于缺乏具有三维环境和动态共培养等基本要素的临床比例模型,阻碍了这一领域的进展。本文的研究重点是开发一种外周神经系统(PNS)体外共培养模型,其中涉及使用微观结构复制神经地形的功能性生物材料。首先,研究了神经元衍生细胞系(N)和许旺细胞(SC)与一小段生物材料(5 毫米)接触的行为。随后使用荧光标记和存活检测进行的研究表明了共培养的协同效应。然后将这些优化参数应用于较长的生物材料(30 毫米),相当于临床使用的 NGC。结果表明,在临床规模的生物材料上维持 SC 和 N 长达 7 天的共培养是可能的,并能观察到一些功能。从长远来看,从这项工作中获得的知识将有助于更好地了解 PNS 再生过程,促进未来治疗方法的开发,同时减少对动物实验的依赖。该模型可用于药物筛选,也可用于个性化医学试验。最终,这项工作填补了目前研究中的一个重要空白,为研究和推进 PNS 损伤的治疗提供了一种变革性方法。
{"title":"Dynamic three-dimensional coculture model: The future of tissue engineering applied to the peripheral nervous system.","authors":"William Choinière, Ève Petit, Vincent Monfette, Samuel Pelletier, Catherine Godbout-Lavoie, Marc-Antoine Lauzon","doi":"10.1177/20417314241265916","DOIUrl":"10.1177/20417314241265916","url":null,"abstract":"<p><p>Traumatic injuries to the peripheral nervous system (PNI) can lead to severe consequences such as paralysis. Unfortunately, current treatments rarely allow for satisfactory functional recovery. The high healthcare costs associated with PNS injuries, worker disability, and low patient satisfaction press for alternative solutions that surpass current standards. For the treatment of injuries with a deficit of less than 30 mm to bridge, the use of synthetic nerve conduits (NGC) is favored. However, to develop such promising therapeutic strategies, <i>in vitro</i> models that more faithfully mimic nerve physiology are needed. The absence of a clinically scaled model with essential elements such as a three-dimension environment and dynamic coculture has hindered progress in this field. The presented research focuses on the development of an <i>in vitro</i> coculture model of the peripheral nervous system (PNS) involving the use of functional biomaterial which microstructure replicates nerve topography. Initially, the behavior of neuron-derived cell lines (N) and Schwann cells (SC) in contact with a short section of biomaterial (5 mm) was studied. Subsequent investigations, using fluorescent markers and survival assays, demonstrated the synergistic effects of coculture. These optimized parameters were then applied to longer biomaterials (30 mm), equivalent to clinically used NGC. The results obtained demonstrated the possibility of maintaining an extended coculture of SC and N over a 7-day period on a clinically scaled biomaterial, observing some functionality. In the long term, the knowledge gained from this work will contribute to a better understanding of the PNS regeneration process and promote the development of future therapeutic approaches while reducing reliance on animal experimentation. This model can be used for drug screening and adapted for personalized medicine trials. Ultimately, this work fills a critical gap in current research, providing a transformative approach to study and advance treatments for PNS injuries.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral delivery of pH-sensitive nanoparticles loaded Celastrol targeting the inflammatory colons to treat ulcerative colitis. 以炎症性结肠为靶点,口服含 Celastrol 的 pH 值敏感纳米颗粒,治疗溃疡性结肠炎。
IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-10 eCollection Date: 2024-01-01 DOI: 10.1177/20417314241265892
Yue Zhao, Yinlian Yao, Shilong Fan, Xin Shen, Xingxing Chai, Zimin Li, Jiachun Zeng, Jiang Pi, Zhikun Zhou, Gonghua Huang, Hua Jin

The incidence of ulcerative colitis (UC) is rapidly rising worldwide. Oral drug delivery system is a promising approach for treating UC, but it often fails to accumulate to the inflammatory lesions, thus, it is impressive to develop a colon-targeted oral delivery system for preventing systemic toxicity and maintaining UC therapeutics. Here, a negative-charged PLGA nanoparticle system was designed to encapsulate celastrol (Cel), and then chitosan and mannose were coated on the surface of the nanoparticles (MC@Cel-NPs) to endow these nanoparticles with the mucosal adsorption and macrophage targeting abilities. MC@Cel-NPs demonstrate excellent resist decomposition ability against the strong acidic gastrointestinal environment, and accumulates in the specific inflammatory sites through the affinity of electrostatic reaction. After releasing the payload, MC@Cel-NPs could remarkably alleviate the colon inflammation, which was evidenced by the decrease in pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in both blood and colon sections, and scavenging reactive oxygen species (ROS) in colon cells, including macrophage, neutrophil, T cell, and B cell. This nanoparticle system provided a new approach for treating UC through a Chinese herbal ingredient-related oral delivery manner.

溃疡性结肠炎(UC)的发病率在全球迅速上升。口服给药系统是治疗溃疡性结肠炎的一种很有前景的方法,但它往往不能在炎症病变部位蓄积,因此,开发一种结肠靶向口服给药系统以防止全身毒性并维持溃疡性结肠炎的治疗效果令人印象深刻。本文设计了一种带负电荷的PLGA纳米颗粒系统来包裹西司他醇(Cel),然后在纳米颗粒(MC@Cel-NPs)表面包覆壳聚糖和甘露糖,使这些纳米颗粒具有粘膜吸附和巨噬细胞靶向能力。MC@Cel-NPs 在强酸性胃肠道环境中表现出优异的抗分解能力,并通过静电反应的亲和力在特定炎症部位聚集。释放有效载荷后,MC@Cel-NPs 能显著缓解结肠炎症,这表现在血液和结肠切片中的促炎细胞因子 TNF-α、IL-1β 和 IL-6 均有所下降,并能清除结肠细胞(包括巨噬细胞、中性粒细胞、T 细胞和 B 细胞)中的活性氧(ROS)。这种纳米颗粒系统通过与中药成分相关的口服给药方式为治疗 UC 提供了一种新方法。
{"title":"Oral delivery of pH-sensitive nanoparticles loaded Celastrol targeting the inflammatory colons to treat ulcerative colitis.","authors":"Yue Zhao, Yinlian Yao, Shilong Fan, Xin Shen, Xingxing Chai, Zimin Li, Jiachun Zeng, Jiang Pi, Zhikun Zhou, Gonghua Huang, Hua Jin","doi":"10.1177/20417314241265892","DOIUrl":"10.1177/20417314241265892","url":null,"abstract":"<p><p>The incidence of ulcerative colitis (UC) is rapidly rising worldwide. Oral drug delivery system is a promising approach for treating UC, but it often fails to accumulate to the inflammatory lesions, thus, it is impressive to develop a colon-targeted oral delivery system for preventing systemic toxicity and maintaining UC therapeutics. Here, a negative-charged PLGA nanoparticle system was designed to encapsulate celastrol (Cel), and then chitosan and mannose were coated on the surface of the nanoparticles (MC@Cel-NPs) to endow these nanoparticles with the mucosal adsorption and macrophage targeting abilities. MC@Cel-NPs demonstrate excellent resist decomposition ability against the strong acidic gastrointestinal environment, and accumulates in the specific inflammatory sites through the affinity of electrostatic reaction. After releasing the payload, MC@Cel-NPs could remarkably alleviate the colon inflammation, which was evidenced by the decrease in pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in both blood and colon sections, and scavenging reactive oxygen species (ROS) in colon cells, including macrophage, neutrophil, T cell, and B cell. This nanoparticle system provided a new approach for treating UC through a Chinese herbal ingredient-related oral delivery manner.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional vascularized liver organoid on extracellular matrix with defined stiffness for modeling fibrotic and normal tissues. 细胞外基质上的二维血管化肝器官模型,具有确定的硬度,可用于纤维化和正常组织建模。
IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-10 eCollection Date: 2024-01-01 DOI: 10.1177/20417314241268344
Lei Ma, Lin Yin, Hai Zhu, Jing Li, Dong Wang

Antifibrotic drug screening requires evaluating the inhibitory effects of drug candidates on fibrotic cells while minimizing any adverse effects on normal cells. It is challenging to create organ-specific vascularized organoids that accurately model fibrotic and normal tissues for drug screening. Our previous studies have established methods for culturing primary microvessels and epithelial cells from adult tissues. In this proof-of-concept study, we used rats as a model organism to create a two-dimensional vascularized liver organoid model that comprised primary microvessels, epithelia, and stellate cells from adult livers. To provide appropriate substrates for cell culture, we engineered ECMs with defined stiffness to mimic the different stages of fibrotic tissues and normal tissues. We examined the effects of two TGFβ signaling inhibitors, A83-01 and pirfenidone, on the vascularized liver organoids on the stiff and soft ECMs. We found that A83-01 inhibited fibrotic markers while promoting epithelial genes of hepatocytes and cholangiocytes. However, it inhibited microvascular genes on soft ECM, indicating a detrimental effect on normal tissues. Furthermore, A83-01 significantly promoted the expression of markers of stem cells and cancers, increasing the potential risk of it being a carcinogen. In contrast, pirfenidone, an FDA-approved compound for antifibrotic treatments, did not significantly affect all the genes examined on soft ECM. Although pirfenidone had minor effects on most genes, it did reduce the expression of collagens, the major components of fibrotic tissues. These results explain why pirfenidone can slow fibrosis progression with minor side effects in clinical trials. In conclusion, our study presents a method for creating vascularized liver organoids that can accurately mimic fibrotic and normal tissues for drug screening. Our findings provide valuable insights into the potential risks and benefits of using A83-01 and pirfenidone as antifibrotic drugs. This method can be applied to other organs to create organ-specific vascularized organoids for drug development.

抗纤维化药物筛选需要评估候选药物对纤维化细胞的抑制作用,同时尽量减少对正常细胞的不利影响。创建器官特异性血管化器官组织,准确模拟纤维化和正常组织进行药物筛选是一项挑战。我们之前的研究已经建立了从成人组织中培养原始微血管和上皮细胞的方法。在这项概念验证研究中,我们以大鼠为模型生物,创建了一个二维血管化肝脏类器官模型,该模型由来自成人肝脏的原代微血管、上皮细胞和星状细胞组成。为了给细胞培养提供合适的基质,我们设计了具有特定硬度的 ECM,以模拟纤维化组织和正常组织的不同阶段。我们研究了两种 TGFβ 信号抑制剂 A83-01 和吡非尼酮对硬质和软质 ECM 上的血管化肝组织细胞的影响。我们发现,A83-01 可抑制纤维化标志物,同时促进肝细胞和胆管细胞的上皮基因。然而,它抑制了软 ECM 上的微血管基因,这表明它对正常组织有不利影响。此外,A83-01 还能明显促进干细胞和癌症标志物的表达,增加了其成为致癌物的潜在风险。相比之下,美国食品和药物管理局(FDA)批准用于抗纤维化治疗的化合物吡非尼酮并没有对软 ECM 上的所有基因产生明显影响。虽然吡非尼酮对大多数基因的影响较小,但它确实降低了纤维化组织的主要成分胶原蛋白的表达。这些结果解释了为什么在临床试验中,吡非尼酮可以减缓纤维化的进展,而且副作用很小。总之,我们的研究提出了一种创建血管化肝器官组织的方法,这种方法可以准确模拟纤维化组织和正常组织进行药物筛选。我们的研究结果为了解使用 A83-01 和吡非尼酮作为抗纤维化药物的潜在风险和益处提供了宝贵的见解。这种方法可应用于其他器官,以创建器官特异性血管化器官组织用于药物开发。
{"title":"Two-dimensional vascularized liver organoid on extracellular matrix with defined stiffness for modeling fibrotic and normal tissues.","authors":"Lei Ma, Lin Yin, Hai Zhu, Jing Li, Dong Wang","doi":"10.1177/20417314241268344","DOIUrl":"10.1177/20417314241268344","url":null,"abstract":"<p><p>Antifibrotic drug screening requires evaluating the inhibitory effects of drug candidates on fibrotic cells while minimizing any adverse effects on normal cells. It is challenging to create organ-specific vascularized organoids that accurately model fibrotic and normal tissues for drug screening. Our previous studies have established methods for culturing primary microvessels and epithelial cells from adult tissues. In this proof-of-concept study, we used rats as a model organism to create a two-dimensional vascularized liver organoid model that comprised primary microvessels, epithelia, and stellate cells from adult livers. To provide appropriate substrates for cell culture, we engineered ECMs with defined stiffness to mimic the different stages of fibrotic tissues and normal tissues. We examined the effects of two TGFβ signaling inhibitors, A83-01 and pirfenidone, on the vascularized liver organoids on the stiff and soft ECMs. We found that A83-01 inhibited fibrotic markers while promoting epithelial genes of hepatocytes and cholangiocytes. However, it inhibited microvascular genes on soft ECM, indicating a detrimental effect on normal tissues. Furthermore, A83-01 significantly promoted the expression of markers of stem cells and cancers, increasing the potential risk of it being a carcinogen. In contrast, pirfenidone, an FDA-approved compound for antifibrotic treatments, did not significantly affect all the genes examined on soft ECM. Although pirfenidone had minor effects on most genes, it did reduce the expression of collagens, the major components of fibrotic tissues. These results explain why pirfenidone can slow fibrosis progression with minor side effects in clinical trials. In conclusion, our study presents a method for creating vascularized liver organoids that can accurately mimic fibrotic and normal tissues for drug screening. Our findings provide valuable insights into the potential risks and benefits of using A83-01 and pirfenidone as antifibrotic drugs. This method can be applied to other organs to create organ-specific vascularized organoids for drug development.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioengineered cartilaginous grafts for repairing segmental mandibular defects 用于修复下颌骨节段性缺损的生物工程软骨移植物
IF 8.2 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-02 DOI: 10.1177/20417314241267017
D S Abdullah Al Maruf, Hai Xin, Kai Cheng, Alejandro Garcia Garcia, Masoud Mohseni-Dargah, Eitan Ben-Sefer, Eva Tomaskovic-Crook, Jeremy Micah Crook, Jonathan Robert Clark
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
重建临界大小的颅面骨缺损是一项全球性的医疗挑战。目前的方法,如自体骨移植,面临着局限性。骨组织工程提供了一种替代自体骨的方法,传统方法侧重于通过膜内骨化(IMO)途径刺激成骨。然而,膜内骨化途径无法解决较大的缺损问题,尤其是在血管化不足的临床情况下。本综述探讨了通过软骨内骨化(ECO)重新引导骨再生,这是缺氧条件下刺激长骨愈合时观察到的一个过程。尽管ECO前景广阔,但在将其应用于骨组织工程实验方面仍存在差距,需要阐明细胞来源、生物材料和预处理方案等关键方面。本综述讨论了用于软骨生成和肥大软骨细胞诱导的各种支架生物材料和细胞来源,反映了 ECO 途径。综述强调了目前软骨内引物所面临的挑战,并提出了替代方法。重点是下颌骨节段性缺损修复,为未来研究和临床应用提供启示。这篇简明扼要的综述旨在通过解决 ECO 策略中的关键差距来推动骨组织工程学的发展。
{"title":"Bioengineered cartilaginous grafts for repairing segmental mandibular defects","authors":"D S Abdullah Al Maruf, Hai Xin, Kai Cheng, Alejandro Garcia Garcia, Masoud Mohseni-Dargah, Eitan Ben-Sefer, Eva Tomaskovic-Crook, Jeremy Micah Crook, Jonathan Robert Clark","doi":"10.1177/20417314241267017","DOIUrl":"https://doi.org/10.1177/20417314241267017","url":null,"abstract":"Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optogenetically modified human embryonic stem cell-derived otic neurons establish functional synaptic connection with cochlear nuclei 经光遗传修饰的人类胚胎干细胞衍生耳神经元与耳蜗核建立功能性突触连接
IF 8.2 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-07-31 DOI: 10.1177/20417314241265198
Yanni Chen, Wenbo Mu, Yongkang Wu, Jiake Xu, Xiaofang Li, Hui Hu, Siqi Wang, Dali Wang, Bin Hui, Lang Wang, Yi Dong, Wei Chen
Spiral ganglia neurons (SGNs) impairment can cause deafness. One important therapeutic approach involves utilizing stem cells to restore impaired auditory circuitry. Nevertheless, the inadequate implementation of research methodologies poses a challenge in accurately assessing the functionality of derived cells within the circuit. Here, we describe a novel method for converting human embryonic stem cells (hESCs) into otic neurons (ONs) and assess their functional connectivity using an optogenetic approach with cells or an organotypic slice of rat cochlear nucleus (CN) in coculture. Embryonic stem cell-derived otic neurons (eONs) exhibited SGN marker expression and generated functional synaptic connection when cocultured with cochlear nucleus neurons (CNNs). Synapsin 1 and VGLUT expression are found in the cochlear nucleus of brain slices, where eONs projected processes during the coculture of eONs and CN brain slices. Action potential spikes and INa+/IK+ of CNNs increased in tandem with light stimulations to eONs. These findings provide further evidence that eONs may be a candidate source to treat SGN-deafness.
螺旋神经节神经元(SGNs)受损可导致耳聋。一种重要的治疗方法是利用干细胞恢复受损的听觉回路。然而,研究方法的不充分实施对准确评估电路内衍生细胞的功能构成了挑战。在此,我们描述了一种将人类胚胎干细胞(hESCs)转化为耳神经元(ONs)的新方法,并利用细胞或大鼠耳蜗核(CN)有机切片共培养的光遗传学方法评估其功能连接性。胚胎干细胞衍生的耳神经元(eONs)在与耳蜗核神经元(CNNs)共培养时表现出SGN标记表达并产生功能性突触连接。在 eONs 与 CN 脑片共培养期间,在 eONs 投射过程的脑片耳蜗核中发现了突触素 1 和 VGLUT 的表达。光刺激eONs时,CNNs的动作电位尖峰和INa+/IK+同步增加。这些发现进一步证明,eONs可能是治疗SGN失聪的候选来源。
{"title":"Optogenetically modified human embryonic stem cell-derived otic neurons establish functional synaptic connection with cochlear nuclei","authors":"Yanni Chen, Wenbo Mu, Yongkang Wu, Jiake Xu, Xiaofang Li, Hui Hu, Siqi Wang, Dali Wang, Bin Hui, Lang Wang, Yi Dong, Wei Chen","doi":"10.1177/20417314241265198","DOIUrl":"https://doi.org/10.1177/20417314241265198","url":null,"abstract":"Spiral ganglia neurons (SGNs) impairment can cause deafness. One important therapeutic approach involves utilizing stem cells to restore impaired auditory circuitry. Nevertheless, the inadequate implementation of research methodologies poses a challenge in accurately assessing the functionality of derived cells within the circuit. Here, we describe a novel method for converting human embryonic stem cells (hESCs) into otic neurons (ONs) and assess their functional connectivity using an optogenetic approach with cells or an organotypic slice of rat cochlear nucleus (CN) in coculture. Embryonic stem cell-derived otic neurons (eONs) exhibited SGN marker expression and generated functional synaptic connection when cocultured with cochlear nucleus neurons (CNNs). Synapsin 1 and VGLUT expression are found in the cochlear nucleus of brain slices, where eONs projected processes during the coculture of eONs and CN brain slices. Action potential spikes and I<jats:sub>Na+</jats:sub>/I<jats:sub>K+</jats:sub> of CNNs increased in tandem with light stimulations to eONs. These findings provide further evidence that eONs may be a candidate source to treat SGN-deafness.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases 基于水凝胶的 microRNA 递送系统的机理及其在炎症性疾病中的应用策略
IF 8.2 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-07-31 DOI: 10.1177/20417314241265897
Shaorun Hu, Yu Liang, Jinxiang Chen, Xiaojun Gao, Youkun Zheng, Liqun Wang, Jun Jiang, Min Zeng, Mao Luo
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients’ quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
水凝胶由三维聚合物网络组成,是一种优良的输送载体,已被广泛应用于生物医学领域。炎症是防止有害物质进入生物体的一种保护机制,但长期慢性炎症会导致氧化应激,从而损害组织和器官,对患者的生活质量产生不利影响。越来越多的证据表明,微小核糖核酸(miRNA)的异常表达在炎症性疾病的病因和进展中起着重要作用。在对创新水凝胶材料的持续研究过程中,发现了许多可作为基因载体在细胞内递送 miRNA 的水凝胶。装载了外源 miRNA 抑制剂或模拟物的 MiRNA 水凝胶递送系统能对炎症性疾病进行有针对性的 miRNA 干预,并有效防止环境应激源降解或使 miRNA 失活。在这篇综述中,我们总结了 miRNA 水凝胶递送系统的分类、将 miRNA 加载到水凝胶中的基本策略和机制,强调了 miRNA 水凝胶递送系统在炎症性疾病中的生物医学应用,并就 miRNA 递送系统这一前景广阔的领域中潜在的机遇和挑战分享了我们的观点。这些发现可能为预防和治疗炎症相关疾病提供新的理论依据,并为临床转化奠定基础。
{"title":"Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases","authors":"Shaorun Hu, Yu Liang, Jinxiang Chen, Xiaojun Gao, Youkun Zheng, Liqun Wang, Jun Jiang, Min Zeng, Mao Luo","doi":"10.1177/20417314241265897","DOIUrl":"https://doi.org/10.1177/20417314241265897","url":null,"abstract":"Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients’ quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. 糖尿病伤口愈合中的免疫调节:巨噬细胞重编程与免疫治疗水凝胶的交集。
IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-07-27 eCollection Date: 2024-01-01 DOI: 10.1177/20417314241265202
Dan Sun, Qiang Chang, Feng Lu

Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.

由于全身代谢紊乱和局部炎症的相互作用阻碍了伤口愈合,糖尿病伤口愈合成为一项重大的临床挑战。巨噬细胞在伤口愈合过程中会发生从 M1 到 M2 的表型转变,这一转变对有效的组织修复至关重要。然而,在糖尿病伤口中,微环境会破坏这种表型极化,使炎症长期存在,阻碍伤口愈合。重新编程巨噬细胞以恢复其 M2 表型为调节伤口免疫微环境和促进愈合提供了一条潜在的途径。本综述阐明了糖尿病伤口中巨噬细胞向M2表型极化受损的机制,并讨论了促进巨噬细胞向M2转化的新策略,包括表观遗传和代谢干预。水凝胶具有水合三维交联结构,与生理细胞外基质非常相似,具有生物相容性、可调性和多功能性等优势。这些特性使得水凝胶有望成为开发免疫调节材料的候选材料,以解决糖尿病伤口问题。了解水凝胶在免疫疗法中的作用,尤其是在巨噬细胞重编程方面的作用,对于开发先进的伤口护理解决方案至关重要。本综述还重点介绍了免疫治疗水凝胶的最新进展,这是向精确有效地治疗糖尿病伤口迈出的一步。
{"title":"Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels.","authors":"Dan Sun, Qiang Chang, Feng Lu","doi":"10.1177/20417314241265202","DOIUrl":"10.1177/20417314241265202","url":null,"abstract":"<p><p>Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration. 新型 3D 打印 TPMS 支架:微结构、特性及在骨再生中的应用。
IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-07-26 eCollection Date: 2024-01-01 DOI: 10.1177/20417314241263689
Jiaqi Ma, Yumeng Li, Yujing Mi, Qiannan Gong, Pengfei Zhang, Bing Meng, Jue Wang, Jing Wang, Yawei Fan

Bone defect disease seriously endangers human health and affects beauty and function. In the past five years, the three dimension (3D) printed radially graded triply periodic minimal surface (TPMS) porous scaffold has become a new solution for repairing bone defects. This review discusses 3D printing technologies and applications for TPMS scaffolds. To this end, the microstructural effects of 3D printed TPMS scaffolds on bone regeneration were reviewed and the structural characteristics of TPMS, which can promote bone regeneration, were introduced. Finally, the challenges and prospects of using TPMS scaffolds to treat bone defects were presented. This review is expected to stimulate the interest of bone tissue engineers in radially graded TPMS scaffolds and provide a reliable solution for the clinical treatment of personalised bone defects.

骨缺损疾病严重危害人类健康,影响美观和功能。近五年来,三维打印径向分级三重周期性极小表面(TPMS)多孔支架已成为修复骨缺损的新方案。本综述讨论了三维打印技术和 TPMS 支架的应用。为此,综述了三维打印 TPMS 支架对骨再生的微观结构影响,并介绍了 TPMS 的结构特点,这些特点可促进骨再生。最后,介绍了使用 TPMS 支架治疗骨缺损所面临的挑战和前景。本综述有望激发骨组织工程师对径向分级 TPMS 支架的兴趣,并为个性化骨缺损的临床治疗提供可靠的解决方案。
{"title":"Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration.","authors":"Jiaqi Ma, Yumeng Li, Yujing Mi, Qiannan Gong, Pengfei Zhang, Bing Meng, Jue Wang, Jing Wang, Yawei Fan","doi":"10.1177/20417314241263689","DOIUrl":"10.1177/20417314241263689","url":null,"abstract":"<p><p>Bone defect disease seriously endangers human health and affects beauty and function. In the past five years, the three dimension (3D) printed radially graded triply periodic minimal surface (TPMS) porous scaffold has become a new solution for repairing bone defects. This review discusses 3D printing technologies and applications for TPMS scaffolds. To this end, the microstructural effects of 3D printed TPMS scaffolds on bone regeneration were reviewed and the structural characteristics of TPMS, which can promote bone regeneration, were introduced. Finally, the challenges and prospects of using TPMS scaffolds to treat bone defects were presented. This review is expected to stimulate the interest of bone tissue engineers in radially graded TPMS scaffolds and provide a reliable solution for the clinical treatment of personalised bone defects.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered extracellular vesicle-delivered TGF-β inhibitor for attenuating osteoarthritis by targeting subchondral bone 细胞外囊泡工程化 TGF-β 抑制剂通过靶向软骨下骨减轻骨关节炎的影响
IF 8.2 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-07-25 DOI: 10.1177/20417314241257781
Zhaopu Jing, Guangyang Zhang, Yuanqing Cai, Jialin Liang, Leifeng Lv, Xiaoqian Dang
Osteoarthritis (OA) is a disease that affects the entire joint. To treat OA, it may be beneficial to inhibit the activity of TGF-β in the subchondral bone. However, delivering drugs to the subchondral bone using conventional methods is challenging. In this study, we developed an extracellular vesicle delivery system. The utilization of macrophage-derived extracellular vesicles as a drug-carrying platform enables drugs to evade immune clearance and cross biological barriers. By incorporating targeting peptides on the surface of extracellular vesicles, the drug platform becomes targeted. The combination of these two factors results in the successful delivery of the drug to the subchondral bone. The study evaluated the stability, cytotoxicity, and bone targeting capability of the engineered extracellular vesicle platform (BT-EV-G). It also assessed the effects of BT-EV-G on the differentiation, proliferation, and migration of bone mesenchymal stem cells (BMSCs). Additionally, the researchers administered BT-EV-G to anterior cruciate ligament transection (ACLT)-induced OA mice. The results showed that BT-EV-G had low toxicity and high bone targeting ability both in vitro and in vivo. BT-EV-G can restore coupled bone remodeling in subchondral bone by inhibiting pSmad2/3-dependent TGF-β signaling. This work provides new insights into the treatment of OA.
骨关节炎(OA)是一种影响整个关节的疾病。要治疗 OA,抑制软骨下骨中 TGF-β 的活性可能是有益的。然而,使用传统方法将药物输送到软骨下骨具有挑战性。在这项研究中,我们开发了一种细胞外囊泡递送系统。利用巨噬细胞衍生的细胞外囊泡作为载药平台,可使药物逃避免疫清除并穿越生物屏障。通过在细胞外囊泡表面加入靶向肽,药物平台变得具有靶向性。这两个因素结合在一起,就能成功地将药物输送到软骨下骨。该研究评估了工程细胞外囊泡平台(BT-EV-G)的稳定性、细胞毒性和骨靶向能力。研究还评估了BT-EV-G对骨间充质干细胞(BMSCs)分化、增殖和迁移的影响。此外,研究人员给前十字韧带横断(ACLT)诱导的OA小鼠注射了BT-EV-G。结果表明,BT-EV-G 在体外和体内都具有低毒性和高骨靶向能力。BT-EV-G可通过抑制pSmad2/3依赖的TGF-β信号传导,恢复软骨下骨的耦合骨重塑。这项研究为治疗 OA 提供了新的思路。
{"title":"Engineered extracellular vesicle-delivered TGF-β inhibitor for attenuating osteoarthritis by targeting subchondral bone","authors":"Zhaopu Jing, Guangyang Zhang, Yuanqing Cai, Jialin Liang, Leifeng Lv, Xiaoqian Dang","doi":"10.1177/20417314241257781","DOIUrl":"https://doi.org/10.1177/20417314241257781","url":null,"abstract":"Osteoarthritis (OA) is a disease that affects the entire joint. To treat OA, it may be beneficial to inhibit the activity of TGF-β in the subchondral bone. However, delivering drugs to the subchondral bone using conventional methods is challenging. In this study, we developed an extracellular vesicle delivery system. The utilization of macrophage-derived extracellular vesicles as a drug-carrying platform enables drugs to evade immune clearance and cross biological barriers. By incorporating targeting peptides on the surface of extracellular vesicles, the drug platform becomes targeted. The combination of these two factors results in the successful delivery of the drug to the subchondral bone. The study evaluated the stability, cytotoxicity, and bone targeting capability of the engineered extracellular vesicle platform (BT-EV-G). It also assessed the effects of BT-EV-G on the differentiation, proliferation, and migration of bone mesenchymal stem cells (BMSCs). Additionally, the researchers administered BT-EV-G to anterior cruciate ligament transection (ACLT)-induced OA mice. The results showed that BT-EV-G had low toxicity and high bone targeting ability both in vitro and in vivo. BT-EV-G can restore coupled bone remodeling in subchondral bone by inhibiting pSmad2/3-dependent TGF-β signaling. This work provides new insights into the treatment of OA.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Tissue Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1