A Generalized Bootstrap Procedure of the Standard Error and Confidence Interval Estimation for Inverse Probability of Treatment Weighting.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2024-03-01 Epub Date: 2023-09-19 DOI:10.1080/00273171.2023.2254541
Tenglong Li, Jordan Lawson
{"title":"A Generalized Bootstrap Procedure of the Standard Error and Confidence Interval Estimation for Inverse Probability of Treatment Weighting.","authors":"Tenglong Li, Jordan Lawson","doi":"10.1080/00273171.2023.2254541","DOIUrl":null,"url":null,"abstract":"<p><p>The inverse probability of treatment weighting (IPTW) approach is commonly used in propensity score analysis to infer causal effects in regression models. Due to oversized IPTW weights and errors associated with propensity score estimation, the IPTW approach can underestimate the standard error of causal effect. To remediate this, bootstrap standard errors have been recommended to replace the IPTW standard error, but the ordinary bootstrap (OB) procedure might still result in underestimation of the standard error because of its inefficient resampling scheme and untreated oversized weights. In this paper, we develop a generalized bootstrap (GB) procedure for estimating the standard error and confidence intervals of the IPTW approach. Compared with the OB procedure and other three procedures in comparison, the GB procedure has the highest precision and yields conservative standard error estimates. As a result, the GB procedure produces short confidence intervals with highest coverage rates. We demonstrate the effectiveness of the GB procedure <i>via</i> two simulation studies and a dataset from the National Educational Longitudinal Study-1988 (NELS-88).</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"251-265"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2254541","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The inverse probability of treatment weighting (IPTW) approach is commonly used in propensity score analysis to infer causal effects in regression models. Due to oversized IPTW weights and errors associated with propensity score estimation, the IPTW approach can underestimate the standard error of causal effect. To remediate this, bootstrap standard errors have been recommended to replace the IPTW standard error, but the ordinary bootstrap (OB) procedure might still result in underestimation of the standard error because of its inefficient resampling scheme and untreated oversized weights. In this paper, we develop a generalized bootstrap (GB) procedure for estimating the standard error and confidence intervals of the IPTW approach. Compared with the OB procedure and other three procedures in comparison, the GB procedure has the highest precision and yields conservative standard error estimates. As a result, the GB procedure produces short confidence intervals with highest coverage rates. We demonstrate the effectiveness of the GB procedure via two simulation studies and a dataset from the National Educational Longitudinal Study-1988 (NELS-88).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
治疗加权反向概率的标准误差和置信区间估计的通用 Bootstrap 程序。
倾向得分分析中常用逆概率处理加权法(IPTW)来推断回归模型中的因果效应。由于 IPTW 权重过大以及倾向得分估算的相关误差,IPTW 方法可能会低估因果效应的标准误差。为了解决这个问题,有人建议用自举标准误差来替代 IPTW 标准误差,但普通自举(OB)程序由于其低效的重采样方案和未处理的过大权重,仍可能导致标准误差被低估。本文开发了一种广义自举(GB)程序,用于估计 IPTW 方法的标准误差和置信区间。与 OB 程序和其他三种比较程序相比,GB 程序具有最高的精度,并能得到保守的标准误差估计值。因此,GB 程序产生的置信区间较短,覆盖率最高。我们通过两项模拟研究和 1988 年全国教育纵向研究(NELS-88)的数据集证明了 GB 程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
On the Importance of Considering Concurrent Effects in Random-Intercept Cross-Lagged Panel Modelling: Example Analysis of Bullying and Internalising Problems. Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data. Quantifying Evidence for-and against-Granger Causality with Bayes Factors. Person Specific Parameter Heterogeneity in the 2PL IRT Model. Environment-by-PGS Interaction in the Classical Twin Design: An Application to Childhood Anxiety and Negative Affect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1