{"title":"tRNA-derived fragments as new players in regulatory processes in yeast.","authors":"Agata Tyczewska, Kamilla Grzywacz","doi":"10.1002/yea.3829","DOIUrl":null,"url":null,"abstract":"<p><p>For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"283-289"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3829","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.
期刊介绍:
Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology.
Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources