tRNA-derived fragments as new players in regulatory processes in yeast.

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Yeast Pub Date : 2023-08-01 DOI:10.1002/yea.3829
Agata Tyczewska, Kamilla Grzywacz
{"title":"tRNA-derived fragments as new players in regulatory processes in yeast.","authors":"Agata Tyczewska,&nbsp;Kamilla Grzywacz","doi":"10.1002/yea.3829","DOIUrl":null,"url":null,"abstract":"<p><p>For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"283-289"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3829","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
trna衍生片段在酵母调控过程中的新作用。
很长一段时间以来,RNA分子被视为晶体管分子,遗传信息通过它从DNA流向蛋白质;20世纪60年代提出的模型认为,蛋白质既是基因表达的产物,也是基因表达的调节者。从那时起,成千上万的报告证明rna应该被认为是控制基因表达的因素。据报道,在许多真核生物中普遍存在转录,说明转录组组织高度交织,包括数百种以前未知的非编码rna。随着新类别的非编码rna不断被发现,非编码rna (microRNAs和小干扰rna)在基因表达调控中的关键作用已不再令人惊讶。转移rna (trna)是细胞中第二丰富的rna类型。高通量测序技术的进步揭示了由前体和成熟trna产生的功能性、调节性trna衍生的RNA片段(trf)的存在。这些tRF分子已被发现在应激和不同病理条件下发挥核心作用。在此,我们对过去15年来在各种致病性和非致病性酵母菌中trna衍生片段领域的发现进行了批判性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
期刊最新文献
The Hidden Global Diversity of the Yeast Genus Carlosrosaea: A Biodiversity Databases Perspective. Role of Oral Yeast in Replenishing Gastric Mucosa with Yeast and Helicobacter pylori. pSPObooster: A Plasmid System to Improve Sporulation Efficiency of Saccharomyces cerevisiae Lab Strains. The 5-Fluorouracil RNA Expression Viewer (5-FUR) Facilitates Interpreting the Effects of Drug Treatment and RRP6 Deletion on the Transcriptional Landscape in Yeast. Exploring Saccharomycotina Yeast Ecology Through an Ecological Ontology Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1