Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells.

IF 4.1 Q2 IMMUNOLOGY Immunotherapy advances Pub Date : 2021-01-01 DOI:10.1093/immadv/ltab005
Matthias Eberl, Eric Oldfield, Thomas Herrmann
{"title":"Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells.","authors":"Matthias Eberl,&nbsp;Eric Oldfield,&nbsp;Thomas Herrmann","doi":"10.1093/immadv/ltab005","DOIUrl":null,"url":null,"abstract":"<p><p>Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (<i>E</i>)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"1 1","pages":"ltab005"},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/immadv/ltab005","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltab005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫抗生素:靶向非常规T细胞感知的微生物代谢途径。
人类Vγ9/Vδ2 T细胞、粘膜相关不变性T (MAIT)细胞和其他非常规T细胞专门用于检测人类缺乏的微生物代谢途径中间体。这种半不变先天样T细胞对(E)-4-羟基-3-甲基-但2-烯基焦磷酸(HMB-PP)等化合物的识别,MEP类异戊二烯类生物合成途径的倒数第二代谢物,核黄素生物合成途径的中间体及其代谢物,使免疫系统能够快速感知广泛微生物共享的病原体相关分子模式。鉴于这些代谢途径对微生物生存能力的本质,它们已成为开发新型抗生素的有希望的目标。在这里,我们回顾了最近的研究结果,这些发现将微生物代谢的酶抑制与处理过的微生物产生的非常规T细胞配体水平的改变联系起来,从而产生了“免疫抗生素”的概念:通过调节非常规T细胞反应将直接抗菌活性与免疫治疗效果结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Systematic review and meta-analysis of COVID-19 mRNA vaccine effectiveness against hospitalizations in adults. Hyperactivation of the PI3K pathway in inborn errors of immunity: current understanding and therapeutic perspectives. High-affinity T cell receptor ImmTAC® bispecific efficiently redirects T cells to kill tumor cells expressing the cancer-testis antigen PRAME. A rapid method to assess the in vivo multi-functionality of adoptively transferred engineered TCR T cells. Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1