Three Psychometric-Model-Based Option-Scored Multiple Choice Item Design Principles that Enhance Instruction by Improving Quiz Diagnostic Classification of Knowledge Attributes.
{"title":"Three Psychometric-Model-Based Option-Scored Multiple Choice Item Design Principles that Enhance Instruction by Improving Quiz Diagnostic Classification of Knowledge Attributes.","authors":"William Stout, Robert Henson, Lou DiBello","doi":"10.1007/s11336-022-09885-3","DOIUrl":null,"url":null,"abstract":"<p><p>Three IRT diagnostic-classification-modeling (DCM)-based multiple choice (MC) item design principles are stated that improve classroom quiz student diagnostic classification. Using proven-optimal maximum likelihood-based student classification, example items demonstrate that adherence to these item design principles increases attribute (skills and especially misconceptions) correct classification rates (CCRs). Simple formulas compute these needed item CCRs. By use of these psychometrically driven item design principles, hopefully enough attributes can be accurately diagnosed by necessarily short MC-item-based quizzes to be widely instructionally useful. These results should then stimulate increased use of well-designed MC item quizzes that target accurately diagnosing skills/misconceptions, thereby enhancing classroom learning.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1299-1333"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09885-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Three IRT diagnostic-classification-modeling (DCM)-based multiple choice (MC) item design principles are stated that improve classroom quiz student diagnostic classification. Using proven-optimal maximum likelihood-based student classification, example items demonstrate that adherence to these item design principles increases attribute (skills and especially misconceptions) correct classification rates (CCRs). Simple formulas compute these needed item CCRs. By use of these psychometrically driven item design principles, hopefully enough attributes can be accurately diagnosed by necessarily short MC-item-based quizzes to be widely instructionally useful. These results should then stimulate increased use of well-designed MC item quizzes that target accurately diagnosing skills/misconceptions, thereby enhancing classroom learning.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.