Three Psychometric-Model-Based Option-Scored Multiple Choice Item Design Principles that Enhance Instruction by Improving Quiz Diagnostic Classification of Knowledge Attributes.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2023-12-01 Epub Date: 2022-12-13 DOI:10.1007/s11336-022-09885-3
William Stout, Robert Henson, Lou DiBello
{"title":"Three Psychometric-Model-Based Option-Scored Multiple Choice Item Design Principles that Enhance Instruction by Improving Quiz Diagnostic Classification of Knowledge Attributes.","authors":"William Stout, Robert Henson, Lou DiBello","doi":"10.1007/s11336-022-09885-3","DOIUrl":null,"url":null,"abstract":"<p><p>Three IRT diagnostic-classification-modeling (DCM)-based multiple choice (MC) item design principles are stated that improve classroom quiz student diagnostic classification. Using proven-optimal maximum likelihood-based student classification, example items demonstrate that adherence to these item design principles increases attribute (skills and especially misconceptions) correct classification rates (CCRs). Simple formulas compute these needed item CCRs. By use of these psychometrically driven item design principles, hopefully enough attributes can be accurately diagnosed by necessarily short MC-item-based quizzes to be widely instructionally useful. These results should then stimulate increased use of well-designed MC item quizzes that target accurately diagnosing skills/misconceptions, thereby enhancing classroom learning.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1299-1333"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09885-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Three IRT diagnostic-classification-modeling (DCM)-based multiple choice (MC) item design principles are stated that improve classroom quiz student diagnostic classification. Using proven-optimal maximum likelihood-based student classification, example items demonstrate that adherence to these item design principles increases attribute (skills and especially misconceptions) correct classification rates (CCRs). Simple formulas compute these needed item CCRs. By use of these psychometrically driven item design principles, hopefully enough attributes can be accurately diagnosed by necessarily short MC-item-based quizzes to be widely instructionally useful. These results should then stimulate increased use of well-designed MC item quizzes that target accurately diagnosing skills/misconceptions, thereby enhancing classroom learning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三个基于心理测量模型的选项计分选择题设计原则:通过改进知识属性测验诊断分类来加强教学。
提出了三个基于IRT诊断-分类-建模(DCM)的多项选择题设计原则,以提高课堂测验学生的诊断分类。使用经过验证的基于最大似然的最优学生分类,示例项目表明,遵守这些项目设计原则可以提高属性(技能,特别是误解)正确分类率(CCRs)。简单的公式计算这些所需的项目ccr。通过使用这些心理测量驱动的道具设计原则,我们希望能够通过基于mc道具的简短测试准确地诊断出足够多的属性,从而具有广泛的指导意义。这些结果应该刺激更多地使用设计良好的MC项目测验,以准确诊断技能/误解为目标,从而提高课堂学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Remarks from the Editor-in-Chief. Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models. Ordinal Outcome State-Space Models for Intensive Longitudinal Data. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1