Time-resolved burst variance analysis.

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2023-09-13 DOI:10.1016/j.bpr.2023.100116
Ivan Terterov, Daniel Nettels, Dmitrii E Makarov, Hagen Hofmann
{"title":"Time-resolved burst variance analysis.","authors":"Ivan Terterov,&nbsp;Daniel Nettels,&nbsp;Dmitrii E Makarov,&nbsp;Hagen Hofmann","doi":"10.1016/j.bpr.2023.100116","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying biomolecular dynamics has become a major task of single-molecule fluorescence spectroscopy methods. In single-molecule Förster resonance energy transfer (smFRET), kinetic information is extracted from the stream of photons emitted by attached donor and acceptor fluorophores. Here, we describe a time-resolved version of burst variance analysis that can quantify kinetic rates at microsecond to millisecond timescales in smFRET experiments of diffusing molecules. Bursts are partitioned into segments with a fixed number of photons. The FRET variance is computed from these segments and compared with the variance expected from shot noise. By systematically varying the segment size, dynamics at different timescales can be captured. We provide a theoretical framework to extract kinetic rates from the decay of the FRET variance with increasing segment size. Compared to other methods such as filtered fluorescence correlation spectroscopy, recurrence analysis of single particles, and two-dimensional lifetime correlation spectroscopy, fewer photons are needed to obtain reliable timescale estimates, which reduces the required measurement time.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2023.100116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying biomolecular dynamics has become a major task of single-molecule fluorescence spectroscopy methods. In single-molecule Förster resonance energy transfer (smFRET), kinetic information is extracted from the stream of photons emitted by attached donor and acceptor fluorophores. Here, we describe a time-resolved version of burst variance analysis that can quantify kinetic rates at microsecond to millisecond timescales in smFRET experiments of diffusing molecules. Bursts are partitioned into segments with a fixed number of photons. The FRET variance is computed from these segments and compared with the variance expected from shot noise. By systematically varying the segment size, dynamics at different timescales can be captured. We provide a theoretical framework to extract kinetic rates from the decay of the FRET variance with increasing segment size. Compared to other methods such as filtered fluorescence correlation spectroscopy, recurrence analysis of single particles, and two-dimensional lifetime correlation spectroscopy, fewer photons are needed to obtain reliable timescale estimates, which reduces the required measurement time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间分辨突发方差分析。
定量生物分子动力学已成为单分子荧光光谱方法的主要任务。在单分子Förster共振能量转移(smFRET)中,从附着的供体和受体荧光团发射的光子流中提取动力学信息。在这里,我们描述了一个时间分辨的爆发方差分析版本,它可以在微秒到毫秒的时间尺度上量化扩散分子的smFRET实验中的动力学速率。爆发被分割成具有固定数量光子的片段。从这些片段中计算出FRET方差,并将其与shot noise期望的方差进行比较。通过系统地改变片段大小,可以捕获不同时间尺度上的动态。我们提供了一个理论框架,从FRET变化的衰减中提取动力学速率随着段大小的增加。与滤波荧光相关光谱、单粒子递归分析和二维寿命相关光谱等方法相比,需要更少的光子来获得可靠的时间尺度估计,从而缩短了所需的测量时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Development of a digital amplifier system for cut-open oocyte electrophysiology. Structural studies of the human α1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. Expression level of cardiac ryanodine receptors dictates properties of Ca2+-induced Ca2+ release. Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1