首页 > 最新文献

Biophysical reports最新文献

英文 中文
Surface-bound FXIII enhances deposition and straightness of fibrin fibers.
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-24 DOI: 10.1016/j.bpr.2025.100207
Myra Awan, Maya Papez, Ankita P Walvekar, Sang-Joon J Lee, Kinjal Dasbiswas, Anand K Ramasubramanian

Cross-linked fibrous networks are central to maintaining the structural integrity and functional relevance of many biological and engineered materials. Fibrin networks are the building blocks of blood clots, mediators of tissue injury and repair, and synthetic wound sealants. Cross-linking of fibrin fibers is catalyzed by the activated form of transglutaminase enzyme FXIIIa, which becomes available in plasma but is also readily presented on the surface of activated platelets and macrophages. The contribution of surface-bound FXIIIa to fibrin structure has not been well understood. In this work, we investigated the role of surface-bound FXIIIa on the formation and structure of fibrin fibers from FXIII-deficient plasma by confining the cross-linking reactions to the surface of microspheres. Quantitative microscopy revealed that cross-linking on FXIIIa-coated surfaces facilitates fibrin deposition following a sigmoidal kinetics, and that these fibers were straighter, longer, and more numerous compared with uncross-linked fibers bound to surfaces coated with anti-fibrin antibody. Our results suggest that, by modifying local fibrin density and structure, surface-bound FXIIIa may play a significant role in the mechanobiology of hemostasis and inflammation.

{"title":"Surface-bound FXIII enhances deposition and straightness of fibrin fibers.","authors":"Myra Awan, Maya Papez, Ankita P Walvekar, Sang-Joon J Lee, Kinjal Dasbiswas, Anand K Ramasubramanian","doi":"10.1016/j.bpr.2025.100207","DOIUrl":"10.1016/j.bpr.2025.100207","url":null,"abstract":"<p><p>Cross-linked fibrous networks are central to maintaining the structural integrity and functional relevance of many biological and engineered materials. Fibrin networks are the building blocks of blood clots, mediators of tissue injury and repair, and synthetic wound sealants. Cross-linking of fibrin fibers is catalyzed by the activated form of transglutaminase enzyme FXIIIa, which becomes available in plasma but is also readily presented on the surface of activated platelets and macrophages. The contribution of surface-bound FXIIIa to fibrin structure has not been well understood. In this work, we investigated the role of surface-bound FXIIIa on the formation and structure of fibrin fibers from FXIII-deficient plasma by confining the cross-linking reactions to the surface of microspheres. Quantitative microscopy revealed that cross-linking on FXIIIa-coated surfaces facilitates fibrin deposition following a sigmoidal kinetics, and that these fibers were straighter, longer, and more numerous compared with uncross-linked fibers bound to surfaces coated with anti-fibrin antibody. Our results suggest that, by modifying local fibrin density and structure, surface-bound FXIIIa may play a significant role in the mechanobiology of hemostasis and inflammation.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100207"},"PeriodicalIF":2.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast complementation assays provide limited information on functional features of K+ channels. 酵母互补试验提供了有关 K+ 通道功能特征的有限信息。
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-13 DOI: 10.1016/j.bpr.2025.100206
Kerri Kukovetz, Matea Cartolano, Manuela Gebhardt, Lars E Schumann, Stefan M Kast, Anna Moroni, Gerhard Thiel, Oliver Rauh

We investigate to what extent yeast complementation assays, which in principle can provide large amounts of training data for machine-learning models, yield quantitative correlations between growth rescue and single-channel recordings. If this were the case, yeast complementation results could be used as surrogate data for machine-learning-based channel design. Therefore, we mutated position L94 at the cavity entry of the model K+ channel KcvPBCV1 to all proteinogenic amino acids. The function of the wild-type channel and its mutants was investigated by reconstituting them in planar lipid bilayers and by their ability to rescue the growth of a yeast strain deficient in K+ uptake. The single-channel data show a distinct effect of mutations in this critical position on unitary conductance and open probability, with no apparent causal relationship between the two functional parameters. We also found that even conservative amino acid replacements can alter the unitary conductance and/or open probability and that most functional changes show no systematic relationship with the physicochemical nature of the amino acids. This emphasizes that the functional influence of an amino acid on channel function cannot be reduced to a single chemical property. Mutual comparison of single-channel data and yeast complementation results exhibit only a partial correlation between their electrical parameters and their potency of rescuing growth. Hence, complementation data alone are not sufficient for enabling functional channel design; they need to be complemented by additional parameters such as the number of channels in the plasma membrane.

{"title":"Yeast complementation assays provide limited information on functional features of K<sup>+</sup> channels.","authors":"Kerri Kukovetz, Matea Cartolano, Manuela Gebhardt, Lars E Schumann, Stefan M Kast, Anna Moroni, Gerhard Thiel, Oliver Rauh","doi":"10.1016/j.bpr.2025.100206","DOIUrl":"10.1016/j.bpr.2025.100206","url":null,"abstract":"<p><p>We investigate to what extent yeast complementation assays, which in principle can provide large amounts of training data for machine-learning models, yield quantitative correlations between growth rescue and single-channel recordings. If this were the case, yeast complementation results could be used as surrogate data for machine-learning-based channel design. Therefore, we mutated position L94 at the cavity entry of the model K<sup>+</sup> channel Kcv<sub>PBCV1</sub> to all proteinogenic amino acids. The function of the wild-type channel and its mutants was investigated by reconstituting them in planar lipid bilayers and by their ability to rescue the growth of a yeast strain deficient in K<sup>+</sup> uptake. The single-channel data show a distinct effect of mutations in this critical position on unitary conductance and open probability, with no apparent causal relationship between the two functional parameters. We also found that even conservative amino acid replacements can alter the unitary conductance and/or open probability and that most functional changes show no systematic relationship with the physicochemical nature of the amino acids. This emphasizes that the functional influence of an amino acid on channel function cannot be reduced to a single chemical property. Mutual comparison of single-channel data and yeast complementation results exhibit only a partial correlation between their electrical parameters and their potency of rescuing growth. Hence, complementation data alone are not sufficient for enabling functional channel design; they need to be complemented by additional parameters such as the number of channels in the plasma membrane.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100206"},"PeriodicalIF":2.4,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic origin of the spatial and temporal precision in biological systems.
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2025-01-28 DOI: 10.1016/j.bpr.2025.100197
Anupam Mondal, Anatoly B Kolomeisky

All living systems display remarkable spatial and temporal precision, despite operating in intrinsically fluctuating environments. It is even more surprising given that biological phenomena are regulated by multiple chemical reactions that are also random. Although the underlying molecular mechanisms of surprisingly high precision in biology remain not well understood, a novel theoretical picture that relies on the coupling of relevant stochastic processes has recently been proposed and applied to explain different phenomena. To illustrate this approach, in this review, we discuss two systems that exhibit precision control: spatial regulation in bacterial cell size and temporal regulation in the timing of cell lysis by λ bacteriophage. In cell-size regulation, it is argued that a balance between stochastic cell growth and cell division processes leads to a narrow distribution of cell sizes. In cell lysis, it is shown that precise timing is due to the coupling of holin protein accumulation and the breakage of the cellular membrane. The stochastic coupling framework also allows us to explicitly evaluate dynamic properties for both biological systems, eliminating the need to utilize the phenomenological concept of thresholds. Excellent agreement with experimental observations is observed, supporting the proposed theoretical ideas. These observations also suggest that the stochastic coupling method captures the important aspects of molecular mechanisms of precise cellular regulation, providing a powerful new tool for more advanced investigations of complex biological phenomena.

{"title":"Microscopic origin of the spatial and temporal precision in biological systems.","authors":"Anupam Mondal, Anatoly B Kolomeisky","doi":"10.1016/j.bpr.2025.100197","DOIUrl":"10.1016/j.bpr.2025.100197","url":null,"abstract":"<p><p>All living systems display remarkable spatial and temporal precision, despite operating in intrinsically fluctuating environments. It is even more surprising given that biological phenomena are regulated by multiple chemical reactions that are also random. Although the underlying molecular mechanisms of surprisingly high precision in biology remain not well understood, a novel theoretical picture that relies on the coupling of relevant stochastic processes has recently been proposed and applied to explain different phenomena. To illustrate this approach, in this review, we discuss two systems that exhibit precision control: spatial regulation in bacterial cell size and temporal regulation in the timing of cell lysis by λ bacteriophage. In cell-size regulation, it is argued that a balance between stochastic cell growth and cell division processes leads to a narrow distribution of cell sizes. In cell lysis, it is shown that precise timing is due to the coupling of holin protein accumulation and the breakage of the cellular membrane. The stochastic coupling framework also allows us to explicitly evaluate dynamic properties for both biological systems, eliminating the need to utilize the phenomenological concept of thresholds. Excellent agreement with experimental observations is observed, supporting the proposed theoretical ideas. These observations also suggest that the stochastic coupling method captures the important aspects of molecular mechanisms of precise cellular regulation, providing a powerful new tool for more advanced investigations of complex biological phenomena.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100197"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD spectra reveal the state of G-quadruplexes and i-motifs in repeated and other DNA sequences. CD光谱揭示了重复和其他DNA序列中g -四联体和i-基序的状态。
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2024-11-27 DOI: 10.1016/j.bpr.2024.100187
Levi Diggins, Daniel Ross, Sundeep Bhanot, Rebecca Corallo, Rachel Daley, Krishna Patel, Olivia Lewis, Shane Donahue, Jacob Thaddeus, Lauren Hiers, Christopher Syed, David Eagerton, Bidyut K Mohanty

The B-DNA of the genome contains numerous sequences that can form various noncanonical structures including G-quadruplex (G4), formed by two or more stacks of four guanine residues in a plane, and intercalating motif (i-motif [iM]) formed by alternately arranged C-C+ pairs. One of the easy yet sensitive methods to study G4s and iMs is circular dichroism (CD) spectroscopy, which generates characteristic G4 and iM peaks. We have analyzed and compared the effects of various environmental factors including pH, buffer composition, temperature, flanking sequences, complimentary DNA strands, and single-stranded DNA binding protein (SSB) on the CD patterns of G4s and iMs generated by two groups of DNA molecules, one containing tandem repeats of GGGGCC and CCCCGG from the C9ORF72 gene associated with amyotrophic lateral sclerosis and frontotemporal dementia, and the second containing polyG/polyC clusters from oncogene promoter-proximal regions without such tandem repeats. Changes in pH caused drastic changes in CCCCGG-iM and GGGGCC-G4 and the changes were dependent on repeat numbers and G-C basepairing. In contrast, with the DNA sequences from the promoter-proximal regions of oncogenes, iMs disassembled upon pH changes with the peak slowly shifting to lower wavelength but the G4s did not show significant change. Complementary DNA strands and flanking DNA sequences also regulate G4 and iM formation. The SSB disassembled both G4s and iMs formed by almost all sequences suggesting an in vivo role for SSBs in the disassembly of G4s and iMs during DNA replication and other DNA transactions.

基因组的B DNA包含许多可以形成各种非规范结构的序列,包括g-四重体(G4),由两个或更多四个鸟嘌呤残基在一个平面上堆叠形成,以及由C-C+对交替排列形成的插层基序(i-motif, iM)。圆二色(CD)光谱是研究G4和iM的一种简便而灵敏的方法,它可以产生G4和iM的特征峰。我们分析并比较了各种环境因素,包括pH、缓冲液成分、温度、侧翼序列、互补DNA链和单链DNA结合蛋白(SSB)对两组DNA分子产生的G4s和iMs的CD模式的影响,其中一组DNA分子含有与肌萎缩性侧索硬化症(ALS)和额颞叶痴呆(FTD)相关的C9ORF72基因GGGGCC和CCCCGG的串联重复序列;第二种包含来自癌基因启动子-近端区域的polyG/polyC簇,没有这种串联重复序列。pH变化引起ccggg - im和GGGGCC-G4的剧烈变化,其变化依赖于重复数和G:C碱基配对。相比之下,在癌基因启动子-近端DNA序列中,iMs随着pH的变化而解体,峰值缓慢向较低波长移动,但G4s没有明显变化。互补DNA链和侧翼DNA序列也调节G4和iM的形成。单链DNA结合蛋白SSB可以拆卸几乎所有序列形成的G4s和iMs,这表明在体内,SSB在DNA复制和其他DNA交易过程中参与了G4s和iMs的拆卸。
{"title":"CD spectra reveal the state of G-quadruplexes and i-motifs in repeated and other DNA sequences.","authors":"Levi Diggins, Daniel Ross, Sundeep Bhanot, Rebecca Corallo, Rachel Daley, Krishna Patel, Olivia Lewis, Shane Donahue, Jacob Thaddeus, Lauren Hiers, Christopher Syed, David Eagerton, Bidyut K Mohanty","doi":"10.1016/j.bpr.2024.100187","DOIUrl":"10.1016/j.bpr.2024.100187","url":null,"abstract":"<p><p>The B-DNA of the genome contains numerous sequences that can form various noncanonical structures including G-quadruplex (G4), formed by two or more stacks of four guanine residues in a plane, and intercalating motif (i-motif [iM]) formed by alternately arranged C-C<sup>+</sup> pairs. One of the easy yet sensitive methods to study G4s and iMs is circular dichroism (CD) spectroscopy, which generates characteristic G4 and iM peaks. We have analyzed and compared the effects of various environmental factors including pH, buffer composition, temperature, flanking sequences, complimentary DNA strands, and single-stranded DNA binding protein (SSB) on the CD patterns of G4s and iMs generated by two groups of DNA molecules, one containing tandem repeats of GGGGCC and CCCCGG from the C9ORF72 gene associated with amyotrophic lateral sclerosis and frontotemporal dementia, and the second containing polyG/polyC clusters from oncogene promoter-proximal regions without such tandem repeats. Changes in pH caused drastic changes in CCCCGG-iM and GGGGCC-G4 and the changes were dependent on repeat numbers and G-C basepairing. In contrast, with the DNA sequences from the promoter-proximal regions of oncogenes, iMs disassembled upon pH changes with the peak slowly shifting to lower wavelength but the G4s did not show significant change. Complementary DNA strands and flanking DNA sequences also regulate G4 and iM formation. The SSB disassembled both G4s and iMs formed by almost all sequences suggesting an in vivo role for SSBs in the disassembly of G4s and iMs during DNA replication and other DNA transactions.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100187"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression and biophysical and functional characterization of a recombinant FGF21.
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2025-01-29 DOI: 10.1016/j.bpr.2025.100198
Phuc Phan, Jason Hoang, Thallapuranam Krishnaswamy Suresh Kumar

Fibroblast growth factor 21 (FGF21) is an endocrine FGF that plays a vital role in regulating essential metabolic pathways. FGF21 increases glucose uptake by cells, promotes fatty acid oxidation, reduces blood glucose levels, and alleviates metabolic diseases. However, detailed studies on its stability and biophysical characteristics have not been reported. Herein, we present the overexpression, biophysical characterization, and metabolic activity of a soluble recombinant FGF21 (rFGF21). The far-UV circular dichroism spectra of rFGF21 show a negative trough at 215 nm, indicating that the protein's backbone predominantly adopts a β sheet conformation. rFGF21 shows intrinsic tyrosine fluorescence at 305 nm. Thermal denaturation using differential scanning calorimetry reveals that rFGF21 is relatively thermally unstable, with a melting temperature of 46.8°C (±0.1°C). The urea-induced unfolding of rFGF21 is rapid, with a chemical transition midpoint of 0.4 M. rFGF21 is readily cleaved by trypsin in limited trypsin digestion assays. Isothermal titration calorimetry experiments show that rFGF21 does not bind to heparin. Interestingly, rFGF21 demonstrates proliferative activity in NIH/3T3 fibroblasts and enhances mitochondrial oxidative phosphorylation and fatty acid oxidation in 3T3-L1 adipocytes. These findings provide a crucial framework for the engineering of novel structure-based variants of FGF21 with improved stability and biological activity to treat metabolic disorders.

成纤维细胞生长因子 21(FGF21)是一种内分泌性 FGF,在调节重要的代谢途径中发挥着重要作用。FGF21 可增加细胞对葡萄糖的吸收,促进脂肪酸氧化,降低血糖水平,缓解代谢性疾病。然而,有关其稳定性和生物物理特性的详细研究尚未见报道。在此,我们介绍了一种可溶性重组 FGF21(rFGF21)的过表达、生物物理特征和代谢活性。rFGF21 的远紫外 CD 光谱在 215 纳米处出现负波谷,表明该蛋白质的骨架主要呈 β 片状构象。使用差示扫描量热法进行热变性显示,rFGF21 的热稳定性相对较差,熔化温度(Tm)为 46.8 摄氏度(± 0.1 摄氏度)。在有限的胰蛋白酶消化试验中,rFGF21 很容易被胰蛋白酶裂解。等温滴定量热法(ITC)实验表明,rFGF21 不与肝素结合。有趣的是,rFGF21 在 NIH/3T3 成纤维细胞中显示出增殖活性,并能增强线粒体氧化磷酸化和 3T3-L1 脂肪细胞的脂肪酸氧化。这些发现为设计新型基于结构的 FGF21 变体提供了一个重要框架,这种变体具有更好的稳定性和生物活性,可用于治疗代谢性疾病。
{"title":"Overexpression and biophysical and functional characterization of a recombinant FGF21.","authors":"Phuc Phan, Jason Hoang, Thallapuranam Krishnaswamy Suresh Kumar","doi":"10.1016/j.bpr.2025.100198","DOIUrl":"10.1016/j.bpr.2025.100198","url":null,"abstract":"<p><p>Fibroblast growth factor 21 (FGF21) is an endocrine FGF that plays a vital role in regulating essential metabolic pathways. FGF21 increases glucose uptake by cells, promotes fatty acid oxidation, reduces blood glucose levels, and alleviates metabolic diseases. However, detailed studies on its stability and biophysical characteristics have not been reported. Herein, we present the overexpression, biophysical characterization, and metabolic activity of a soluble recombinant FGF21 (rFGF21). The far-UV circular dichroism spectra of rFGF21 show a negative trough at 215 nm, indicating that the protein's backbone predominantly adopts a β sheet conformation. rFGF21 shows intrinsic tyrosine fluorescence at 305 nm. Thermal denaturation using differential scanning calorimetry reveals that rFGF21 is relatively thermally unstable, with a melting temperature of 46.8°C (±0.1°C). The urea-induced unfolding of rFGF21 is rapid, with a chemical transition midpoint of 0.4 M. rFGF21 is readily cleaved by trypsin in limited trypsin digestion assays. Isothermal titration calorimetry experiments show that rFGF21 does not bind to heparin. Interestingly, rFGF21 demonstrates proliferative activity in NIH/3T3 fibroblasts and enhances mitochondrial oxidative phosphorylation and fatty acid oxidation in 3T3-L1 adipocytes. These findings provide a crucial framework for the engineering of novel structure-based variants of FGF21 with improved stability and biological activity to treat metabolic disorders.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100198"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlating disordered activation domain ensembles with gene expression levels. 与基因表达水平相关的无序激活结构域。
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2025-01-03 DOI: 10.1016/j.bpr.2024.100195
Eduardo Flores, Aleah R Camacho, Estefania Cuevas-Zepeda, Mary B McCoy, Feng Yu, Max V Staller, Shahar Sukenik

Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations. Disordered ensembles contain sequence-encoded structural preferences that are often linked to their function. We hypothesize that this link exists between the structural preferences of AD ensembles and their ability to induce gene expression. To test this, we measured the ensemble dimensions of two ADs, HIF-1α and CITED2, in live cells using fluorescence resonance energy transfer microscopy and correlated this structural information with their transcriptional activity. We find that mutations that expanded the ensemble of HIF-1α increased transcriptional activity, while compacting mutations reduced it, highlighting the critical role of structural plasticity in regulating HIF-1α function. Conversely, CITED2 showed no correlation between ensemble dimensions and activity. Our results highlight a possible link between AD ensemble dimensions and their transcriptional activity, with implications for transcriptional regulation and dysfunction.

转录因子蛋白结合特定的DNA启动子序列并启动基因转录。这些蛋白质通常含有调节其转录活性的内在无序激活域(ADs)。与其他无序的蛋白质区域一样,ADs不具有固定的三维结构,而是以一系列构象的形式存在。无序集成包含序列编码的结构偏好,这些偏好通常与它们的功能有关。我们假设这种联系存在于AD集合的结构偏好和它们诱导基因表达的能力之间。为了验证这一点,我们使用FRET显微镜测量了活细胞中HIF-1α和CITED2两种ad的集合尺寸,并将这些结构信息与它们的转录活性联系起来。我们发现扩展HIF-1α集合的突变增加了转录活性,而压缩突变降低了转录活性,突出了结构可塑性在调节HIF-1α功能中的关键作用。相反,CITED2显示整体尺寸与活动之间没有相关性。我们的研究结果强调了AD集合尺寸与其转录活性之间的可能联系,这对转录调节和功能障碍具有重要意义。
{"title":"Correlating disordered activation domain ensembles with gene expression levels.","authors":"Eduardo Flores, Aleah R Camacho, Estefania Cuevas-Zepeda, Mary B McCoy, Feng Yu, Max V Staller, Shahar Sukenik","doi":"10.1016/j.bpr.2024.100195","DOIUrl":"10.1016/j.bpr.2024.100195","url":null,"abstract":"<p><p>Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations. Disordered ensembles contain sequence-encoded structural preferences that are often linked to their function. We hypothesize that this link exists between the structural preferences of AD ensembles and their ability to induce gene expression. To test this, we measured the ensemble dimensions of two ADs, HIF-1α and CITED2, in live cells using fluorescence resonance energy transfer microscopy and correlated this structural information with their transcriptional activity. We find that mutations that expanded the ensemble of HIF-1α increased transcriptional activity, while compacting mutations reduced it, highlighting the critical role of structural plasticity in regulating HIF-1α function. Conversely, CITED2 showed no correlation between ensemble dimensions and activity. Our results highlight a possible link between AD ensemble dimensions and their transcriptional activity, with implications for transcriptional regulation and dysfunction.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100195"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DiffMAP-GP: Continuous 2D diffusion maps from particle trajectories without data binning using Gaussian processes. DiffMAP-GP:连续二维扩散图从粒子轨迹没有数据盒使用高斯过程。
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2024-12-17 DOI: 10.1016/j.bpr.2024.100194
Vishesh Kumar, J Shepard Bryan, Alex Rojewski, Carlo Manzo, Steve Pressé

Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we develop a Bayesian framework (DiffMAP-GP) by placing Gaussian process (GP) priors on the family of candidate maps. For sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to nonconjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.

扩散系数通常在不同区域(如细胞膜)之间变化,量化它们的变化可以提供对局部膜特性(如组成和刚度)有价值的见解。为了量化粒子轨迹的扩散系数空间图和不确定性,我们通过在候选图族上放置高斯过程(GP)先验,开发了一个贝叶斯框架(DiffMAP-GP)。为了提高计算效率,我们利用诱导点方法来处理由数据的数学结构引起的非共轭似然先验对。我们分析了已知的合成数据,以及从膜蛋白的活细胞单分子成像中提取的数据。由此产生的工具提供了一种无监督的方法来严格映射连续跨膜的扩散系数,而无需数据分组。
{"title":"DiffMAP-GP: Continuous 2D diffusion maps from particle trajectories without data binning using Gaussian processes.","authors":"Vishesh Kumar, J Shepard Bryan, Alex Rojewski, Carlo Manzo, Steve Pressé","doi":"10.1016/j.bpr.2024.100194","DOIUrl":"10.1016/j.bpr.2024.100194","url":null,"abstract":"<p><p>Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we develop a Bayesian framework (DiffMAP-GP) by placing Gaussian process (GP) priors on the family of candidate maps. For sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to nonconjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100194"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. 利用荧光寿命测量枯草芽孢杆菌的绝对膜电位
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2025-01-10 DOI: 10.1016/j.bpr.2025.100196
Debjit Roy, Xavier Michalet, Evan W Miller, Kiran Bharadwaj, Shimon Weiss

Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state MPs in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell-resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on 1) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer and 2) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in minimal salts glycerol glutamate [MSgg]), -127 mV (in M9), and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population-level MP heterogeneity of ∼6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.

膜电位(MP)的变化可以提供细菌功能和代谢状态或应激水平的简单读数。虽然有几种光学方法可以测量可兴奋细胞中膜电位的快速变化,但对于细菌细胞中稳态膜电位(MPs)的绝对和精确测量却缺乏这种方法。传统的基于电极的MP测量方法不适合在小细菌细胞中校准光学方法。虽然基于纳恩斯指标的光学测量已经成功使用,但它们不能提供绝对或精确的MP或其变化的量化。我们提出了一种新颖的,校准的MP记录方法来解决这一差距。在这项研究中,我们首次使用基于荧光寿命的方法获得了细菌细胞群中膜电位的单细胞分辨分布及其在细胞外化学扰动下的变化。我们的方法是基于(i)一个独特的电压荧光(VF)光学换能器,其荧光寿命随着MP的变化而变化,通过光诱导电子转移(PeT)和(ii)定量相量flim分析,用于高通量读出。这种方法使MP变化易于可视化、记录和量化。通过使用电离层人工调节钾在膜上的浓度梯度,我们获得了枯草芽孢杆菌特异性的MP与VF寿命校准,并估计未受干扰的枯草芽孢杆菌细胞的MP为-65 mV(在MSgg中),-127 mV(在M9中),化学去极化细胞的MP为-14 mV(在MSgg中)。我们观察到群体水平的MP异质性为~ 6-10 mV,表明个体细胞之间的生理和代谢状态存在相当程度的多样性。我们的工作为深入了解细菌电生理学和生物电研究铺平了道路。
{"title":"Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.","authors":"Debjit Roy, Xavier Michalet, Evan W Miller, Kiran Bharadwaj, Shimon Weiss","doi":"10.1016/j.bpr.2025.100196","DOIUrl":"10.1016/j.bpr.2025.100196","url":null,"abstract":"<p><p>Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state MPs in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell-resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on 1) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer and 2) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in minimal salts glycerol glutamate [MSgg]), -127 mV (in M9), and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population-level MP heterogeneity of ∼6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100196"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust quantification of cellular mechanics using optical tweezers.
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2025-02-11 DOI: 10.1016/j.bpr.2025.100199
Wessel S Rodenburg, Sven F A Ebben, Jorine M Eeftens

The mechanical properties of cells are closely related to function and play a crucial role in many cellular processes, including migration, differentiation, and cell fate determination. Numerous methods have been developed to assess cell mechanics under various conditions, but they often lack accuracy on biologically relevant piconewton-range forces or have limited control over the applied force. Here, we present a straightforward approach for using optically trapped polystyrene beads to accurately apply piconewton-range forces to adherent and suspended cells. We precisely apply a constant force to cells by means of a force-feedback system, allowing for quantification of deformation, cell stiffness, and creep response from a single measurement. Using drug-induced perturbations of the cytoskeleton, we show that this approach is sensitive to detecting changes in cellular mechanical properties. Collectively, we provide a framework for using optical tweezers to apply highly accurate forces to adherent and suspended cells and describe straightforward metrics to quantify cellular mechanical properties.

{"title":"Robust quantification of cellular mechanics using optical tweezers.","authors":"Wessel S Rodenburg, Sven F A Ebben, Jorine M Eeftens","doi":"10.1016/j.bpr.2025.100199","DOIUrl":"10.1016/j.bpr.2025.100199","url":null,"abstract":"<p><p>The mechanical properties of cells are closely related to function and play a crucial role in many cellular processes, including migration, differentiation, and cell fate determination. Numerous methods have been developed to assess cell mechanics under various conditions, but they often lack accuracy on biologically relevant piconewton-range forces or have limited control over the applied force. Here, we present a straightforward approach for using optically trapped polystyrene beads to accurately apply piconewton-range forces to adherent and suspended cells. We precisely apply a constant force to cells by means of a force-feedback system, allowing for quantification of deformation, cell stiffness, and creep response from a single measurement. Using drug-induced perturbations of the cytoskeleton, we show that this approach is sensitive to detecting changes in cellular mechanical properties. Collectively, we provide a framework for using optical tweezers to apply highly accurate forces to adherent and suspended cells and describe straightforward metrics to quantify cellular mechanical properties.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100199"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescent labeling strategies for molecular bioimaging.
IF 2.4 Q3 BIOPHYSICS Pub Date : 2025-03-12 Epub Date: 2025-02-12 DOI: 10.1016/j.bpr.2025.100200
Marcel Streit, Made Budiarta, Marvin Jungblut, Gerti Beliu

Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.

{"title":"Fluorescent labeling strategies for molecular bioimaging.","authors":"Marcel Streit, Made Budiarta, Marvin Jungblut, Gerti Beliu","doi":"10.1016/j.bpr.2025.100200","DOIUrl":"10.1016/j.bpr.2025.100200","url":null,"abstract":"<p><p>Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100200"},"PeriodicalIF":2.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysical reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1