Programmed Necrosis in Host Defense.

3区 医学 Q2 Medicine Current topics in microbiology and immunology Pub Date : 2023-01-01 DOI:10.1007/82_2023_264
Edward S Mocarski
{"title":"Programmed Necrosis in Host Defense.","authors":"Edward S Mocarski","doi":"10.1007/82_2023_264","DOIUrl":null,"url":null,"abstract":"<p><p>Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2023_264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宿主防御中的程序性坏死
宿主对传染病的控制依赖于多细胞生物体细胞检测和抵御病原体以预防疾病的能力。进化为哺乳动物提供了多种独立的免疫机制,以控制或消灭入侵的传染性病原体。许多病原体获得了转移这些免疫机制和促进感染的功能。成功入侵宿主后,细胞自主信号通路会驱动炎症细胞因子的产生、限制因子的部署和细胞死亡的诱导。这些先天性免疫机制共同吸引树突状细胞、中性粒细胞和巨噬细胞以及先天性淋巴细胞(如自然杀伤细胞),它们都有助于控制感染。最终,适应性病原体特异性免疫的发展会清除感染,并提供对感染的免疫记忆。对于病毒等强制性细胞内病原体,多种细胞死亡途径可在后代产生之前消灭宿主细胞,从而为早期控制做出重要贡献。促凋亡的 caspase-8(以及人类的 caspase-10)可执行细胞外凋亡,这是一种由 TNF 家族死亡受体(DR)触发的非溶解性细胞死亡形式。在过去的二十年里,人们描述了外源性凋亡和坏死的交替结果。当受体相互作用蛋白激酶 3(RIPK3)激活混合系激酶样(MLKL)导致细胞渗漏时,就会发生程序性坏死或坏死凋亡。因此,DRs、类收费受体(TLRs)或病原体传感器 Z 核酸结合蛋白 1(ZBP1)的激活,如果不被病毒编码的抑制剂阻断,就会启动细胞凋亡和坏死。哺乳动物的细胞死亡途径会被疱疹病毒和痘病毒编码的细胞死亡抑制因子阻断。越来越多的证据表明,Z-核酸传感器 ZBP1 在细胞自主识别 DNA 和 RNA 病毒感染方面具有重要作用。本册将探讨病毒与细胞之间的缓和关系,以管理死亡机制并避免被消灭,从而支持病毒在宿主动物体内的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
期刊最新文献
A Brief History of Polyclonal Antibody Therapies Against Bacterial and Viral Diseases Before COVID-19. Alterations of the AKT Pathway in Sporadic Human Tumors, Inherited Susceptibility to Cancer, and Overgrowth Syndromes. Evidence for the Efficacy of COVID-19 Convalescent Plasma. HemoClear: A Practical and Cost-Effective Alternative to Conventional Convalescent Plasma Retrieval Methods. Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1