An epidemic dynamics model with limited isolation capacity.

IF 1.3 4区 生物学 Q3 BIOLOGY Theory in Biosciences Pub Date : 2023-09-01 DOI:10.1007/s12064-023-00399-9
Ishfaq Ahmad, Hiromi Seno
{"title":"An epidemic dynamics model with limited isolation capacity.","authors":"Ishfaq Ahmad,&nbsp;Hiromi Seno","doi":"10.1007/s12064-023-00399-9","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a modified SIR model with a four-dimensional system of ordinary differential equations to consider the influence of a limited isolation capacity on the final epidemic size defined as the total number of individuals who experienced the disease at the end of an epidemic season. We derive the necessary and sufficient condition that the isolation reaches the capacity in a finite time on the way of the epidemic process, and show that the final epidemic size is monotonically decreasing in terms of the isolation capacity. We find further that the final epidemic size could have a discontinuous change at the critical value of isolation capacity below which the isolation reaches the capacity in a finite time. Our results imply that the breakdown of isolation with a limited capacity would cause a drastic increase of the epidemic size. Insufficient capacity of the isolation could lead to an unexpectedly severe epidemic situation, while such a severity would be avoidable with the sufficient isolation capacity.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":"142 3","pages":"259-273"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-023-00399-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a modified SIR model with a four-dimensional system of ordinary differential equations to consider the influence of a limited isolation capacity on the final epidemic size defined as the total number of individuals who experienced the disease at the end of an epidemic season. We derive the necessary and sufficient condition that the isolation reaches the capacity in a finite time on the way of the epidemic process, and show that the final epidemic size is monotonically decreasing in terms of the isolation capacity. We find further that the final epidemic size could have a discontinuous change at the critical value of isolation capacity below which the isolation reaches the capacity in a finite time. Our results imply that the breakdown of isolation with a limited capacity would cause a drastic increase of the epidemic size. Insufficient capacity of the isolation could lead to an unexpectedly severe epidemic situation, while such a severity would be avoidable with the sufficient isolation capacity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有有限隔离能力的流行病动力学模型。
我们考虑了一个带有四维常微分方程系统的改进SIR模型,以考虑有限隔离能力对最终流行规模的影响,最终流行规模定义为在流行季节结束时经历该疾病的个体总数。导出了隔离在有限时间内达到隔离能力的充分必要条件,并证明了最终的流行病规模随隔离能力单调减小。我们进一步发现,在隔离能力临界值处,最终疫情规模可能发生不连续变化,在该临界值以下,隔离将在有限时间内达到隔离能力。我们的结果表明,以有限的能力打破隔离将导致流行病规模的急剧增加。隔离能力不足可能导致意外严重的疫情,而如果隔离能力足够,这种严重的疫情是可以避免的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
期刊最新文献
An evolutionary game theory for event-driven ecological population dynamics. Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by FOF1-ATP synthase: mathematical number theory proof and its chemical and biological implications. Forbidden codon combinations in error-detecting circular codes. A new symbiotic, holistic and gradualist model proposal for the concept of "living organism". Mathematical model of tumor immune microenvironment with application to the combined therapy targeting the PD-1/PD-L1 pathway and IL-10 cytokine antibody.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1