Gene amplifications cause high-level resistance against albicidin in gram-negative bacteria.

IF 7.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY PLoS Biology Pub Date : 2023-08-01 DOI:10.1371/journal.pbio.3002186
Mareike Saathoff, Simone Kosol, Torsten Semmler, Karsten Tedin, Nicole Dimos, Johannes Kupke, Maria Seidel, Fereshteh Ghazisaeedi, Micela Condor Jonske, Silver A Wolf, Benno Kuropka, Wojciech Czyszczoń, Dmitry Ghilarov, Stefan Grätz, Jonathan G Heddle, Bernhard Loll, Roderich D Süssmuth, Marcus Fulde
{"title":"Gene amplifications cause high-level resistance against albicidin in gram-negative bacteria.","authors":"Mareike Saathoff,&nbsp;Simone Kosol,&nbsp;Torsten Semmler,&nbsp;Karsten Tedin,&nbsp;Nicole Dimos,&nbsp;Johannes Kupke,&nbsp;Maria Seidel,&nbsp;Fereshteh Ghazisaeedi,&nbsp;Micela Condor Jonske,&nbsp;Silver A Wolf,&nbsp;Benno Kuropka,&nbsp;Wojciech Czyszczoń,&nbsp;Dmitry Ghilarov,&nbsp;Stefan Grätz,&nbsp;Jonathan G Heddle,&nbsp;Bernhard Loll,&nbsp;Roderich D Süssmuth,&nbsp;Marcus Fulde","doi":"10.1371/journal.pbio.3002186","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":"21 8","pages":"e3002186"},"PeriodicalIF":7.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414762/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002186","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因扩增导致革兰氏阴性菌对白杆菌素产生高水平耐药性。
抗生素耐药性是公共卫生领域日益关注的问题。了解耐药机制及其出现对开发新抗生素及其有效使用至关重要。作为一种gyrase毒药,肽抗生素albicidin对多种革兰氏阳性和革兰氏阴性细菌显示出杀灭活性,是一种很有前途的候选药物。在这里,我们报告了一种基于基因扩增的机制的发现,该机制使对白孢杆菌素的抗性水平增加了1000倍。RNA测序和蛋白质组学数据表明,这种新机制通过增加STM3175 (YgiV)的拷贝数来保护鼠伤寒沙门氏菌和大肠杆菌,STM3175是一种转录调节剂,具有类似gyri的小分子结合结构域,可以高亲和力地捕获白孢杆菌素。x射线晶体学和分子对接揭示了gyri -样结构域结合槽中的一个新的保守基序,该基序可以与白柔霉素的芳香构建块相互作用。系统发育研究表明,这种耐药机制在革兰氏阴性菌中普遍存在,我们的实验证实,STM3175同源物可以在创伤弧菌和铜绿假单胞菌等病原体中赋予耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology 生物-生化与分子生物学
CiteScore
14.40
自引率
2.00%
发文量
359
审稿时长
3 months
期刊介绍: PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly. ISSN Numbers: eISSN: 1545-7885 ISSN: 1544-9173
期刊最新文献
Functional network modules overlap and are linked to interindividual connectome differences during human brain development Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion Organelle landscape analysis using a multiparametric particle-based method Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1