Peter N Mittwede, Riccardo Gottardi, Peter G Alexander, Ivan S Tarkin, Rocky S Tuan
{"title":"Clinical Applications of Bone Tissue Engineering in Orthopedic Trauma.","authors":"Peter N Mittwede, Riccardo Gottardi, Peter G Alexander, Ivan S Tarkin, Rocky S Tuan","doi":"10.1007/s40139-018-0166-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Orthopaedic trauma is a major cause of morbidity and mortality worldwide. Although many fractures tend to heal if treated appropriately either by nonoperative or operative methods, delayed or failed healing, as well as infections, can lead to devastating complications. Tissue engineering is an exciting, emerging field with much scientific and clinical relevance in potentially overcoming the current limitations in the treatment of orthopaedic injuries.</p><p><strong>Recent findings: </strong>While direct translation of bone tissue engineering technologies to clinical use remains challenging, considerable research has been done in studying how cells, scaffolds, and signals may be used to enhance acute fracture healing and to address the problematic scenarios of nonunion and critical-sized bone defects. Taken together, the research findings suggest that tissue engineering may be considered to stimulate angiogenesis and osteogenesis, to modulate the immune response to fractures, to improve the biocompatibility of implants, to prevent or combat infection, and to fill large gaps created by traumatic bone loss. The abundance of preclinical data supports the high potential of bone tissue engineering for clinical application, although a number of barriers to translation must first be overcome.</p><p><strong>Summary: </strong>This review focuses on the current and potential applications of bone tissue engineering approaches in orthopaedic trauma with specific attention paid to acute fracture healing, nonunion, and critical-sized bone defects.</p>","PeriodicalId":37014,"journal":{"name":"Current Pathobiology Reports","volume":"6 2","pages":"99-108"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40139-018-0166-x","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pathobiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40139-018-0166-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14
Abstract
Purpose of review: Orthopaedic trauma is a major cause of morbidity and mortality worldwide. Although many fractures tend to heal if treated appropriately either by nonoperative or operative methods, delayed or failed healing, as well as infections, can lead to devastating complications. Tissue engineering is an exciting, emerging field with much scientific and clinical relevance in potentially overcoming the current limitations in the treatment of orthopaedic injuries.
Recent findings: While direct translation of bone tissue engineering technologies to clinical use remains challenging, considerable research has been done in studying how cells, scaffolds, and signals may be used to enhance acute fracture healing and to address the problematic scenarios of nonunion and critical-sized bone defects. Taken together, the research findings suggest that tissue engineering may be considered to stimulate angiogenesis and osteogenesis, to modulate the immune response to fractures, to improve the biocompatibility of implants, to prevent or combat infection, and to fill large gaps created by traumatic bone loss. The abundance of preclinical data supports the high potential of bone tissue engineering for clinical application, although a number of barriers to translation must first be overcome.
Summary: This review focuses on the current and potential applications of bone tissue engineering approaches in orthopaedic trauma with specific attention paid to acute fracture healing, nonunion, and critical-sized bone defects.
期刊介绍:
This journal aims to offer expert review articles on the most important recent research pertaining to biological mechanisms underlying disease, including etiology, pathogenesis, and the clinical manifestations of cellular alteration. By providing clear, insightful, balanced contributions, the journal intends to serve those for whom the elucidation of new techniques and technologies related to pathobiology is essential. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas across the field. Section Editors select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An Editorial Board of more than 20 internationally diverse members reviews the annual table of contents, ensures that topics include emerging research, and suggests topics of special importance to their country/region. Topics covered may include autophagy, cancer stem cells, induced pluripotential stem cells (iPS cells), inflammation and cancer, matrix pathobiology, miRNA in pathobiology, mitochondrial dysfunction/diseases, and myofibroblast.