POPAR: Patch Order Prediction and Appearance Recovery for Self-supervised Medical Image Analysis.

Jiaxuan Pang, Fatemeh Haghighi, DongAo Ma, Nahid Ul Islam, Mohammad Reza Hosseinzadeh Taher, Michael B Gotway, Jianming Liang
{"title":"POPAR: Patch Order Prediction and Appearance Recovery for Self-supervised Medical Image Analysis.","authors":"Jiaxuan Pang, Fatemeh Haghighi, DongAo Ma, Nahid Ul Islam, Mohammad Reza Hosseinzadeh Taher, Michael B Gotway, Jianming Liang","doi":"10.1007/978-3-031-16852-9_8","DOIUrl":null,"url":null,"abstract":"<p><p>Vision transformer-based self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated photographic images. However, their acceptance in medical imaging is still lukewarm, due to the significant discrepancy between medical and photographic images. Consequently, we propose POPAR (patch order prediction and appearance recovery), a novel vision transformer-based self-supervised learning framework for chest X-ray images. POPAR leverages the benefits of vision transformers and unique properties of medical imaging, aiming to simultaneously learn patch-wise high-level contextual features by correcting shuffled patch orders and fine-grained features by recovering patch appearance. We transfer POPAR pretrained models to diverse downstream tasks. The experiment results suggest that (1) POPAR outperforms state-of-the-art (SoTA) self-supervised models with vision transformer backbone; (2) POPAR achieves significantly better performance over all three SoTA contrastive learning methods; and (3) POPAR also outperforms fully-supervised pretrained models across architectures. In addition, our ablation study suggests that to achieve better performance on medical imaging tasks, both fine-grained and global contextual features are preferred. All code and models are available at GitHub.com/JLiangLab/POPAR.</p>","PeriodicalId":72837,"journal":{"name":"Domain adaptation and representation transfer : 4th MICCAI Workshop, DART 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. Domain Adaptation and Representation Transfer (Workshop) (4th : 2022 : Sin...","volume":"13542 ","pages":"77-87"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728135/pdf/nihms-1846235.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Domain adaptation and representation transfer : 4th MICCAI Workshop, DART 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. Domain Adaptation and Representation Transfer (Workshop) (4th : 2022 : Sin...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-16852-9_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vision transformer-based self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated photographic images. However, their acceptance in medical imaging is still lukewarm, due to the significant discrepancy between medical and photographic images. Consequently, we propose POPAR (patch order prediction and appearance recovery), a novel vision transformer-based self-supervised learning framework for chest X-ray images. POPAR leverages the benefits of vision transformers and unique properties of medical imaging, aiming to simultaneously learn patch-wise high-level contextual features by correcting shuffled patch orders and fine-grained features by recovering patch appearance. We transfer POPAR pretrained models to diverse downstream tasks. The experiment results suggest that (1) POPAR outperforms state-of-the-art (SoTA) self-supervised models with vision transformer backbone; (2) POPAR achieves significantly better performance over all three SoTA contrastive learning methods; and (3) POPAR also outperforms fully-supervised pretrained models across architectures. In addition, our ablation study suggests that to achieve better performance on medical imaging tasks, both fine-grained and global contextual features are preferred. All code and models are available at GitHub.com/JLiangLab/POPAR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POPAR:用于自我监督医学图像分析的斑块阶次预测和外观恢复。
基于视觉变换器的自监督学习(SSL)方法最近在从无标注的摄影图像中学习视觉表征方面取得了巨大成功。然而,由于医学图像和摄影图像之间存在巨大差异,它们在医学成像中的应用仍然不温不火。因此,我们提出了 POPAR(补丁顺序预测和外观恢复),这是一种基于视觉变换器的新型胸部 X 光图像自监督学习框架。POPAR 充分利用了视觉变换器的优势和医学影像的独特属性,旨在通过校正洗牌补丁顺序来同时学习补丁的高级上下文特征,并通过恢复补丁外观来同时学习细粒度特征。我们将 POPAR 预训练模型应用于各种下游任务。实验结果表明:(1) POPAR 优于采用视觉转换器骨干的最先进(SoTA)自监督模型;(2) POPAR 的性能明显优于所有三种 SoTA 对比学习方法;(3) POPAR 还优于跨架构的全监督预训练模型。此外,我们的消融研究表明,要在医学成像任务中取得更好的性能,细粒度和全局上下文特征都是首选。所有代码和模型均可从 GitHub.com/JLiangLab/POPAR 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POPAR: Patch Order Prediction and Appearance Recovery for Self-supervised Medical Image Analysis. Discriminative, Restorative, and Adversarial Learning: Stepwise Incremental Pretraining. Benchmarking and Boosting Transformers for Medical Image Classification. Domain Adaptation and Representation Transfer: 4th MICCAI Workshop, DART 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1