Qigang Fan, Ruifen He, Yi Li, Pu Gao, Runchun Huang, Rong Li, Jiayu Zhang, Hongli Li, Xiaolei Liang
{"title":"Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia.","authors":"Qigang Fan, Ruifen He, Yi Li, Pu Gao, Runchun Huang, Rong Li, Jiayu Zhang, Hongli Li, Xiaolei Liang","doi":"10.1080/19396368.2023.2241600","DOIUrl":null,"url":null,"abstract":"<p><p>Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":" ","pages":"333-346"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2023.2241600","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.