{"title":"Why doesn't Ebola virus cause pandemics like SARS-CoV-2?","authors":"Marko Popovic","doi":"10.1016/j.mran.2022.100236","DOIUrl":null,"url":null,"abstract":"<div><p>Ebola virus is among the most dangerous, contagious and deadly etiological causes of viral diseases. However, Ebola virus has never extensively spread in human population and never have led to a pandemic. Why? The mechanistic biophysical model revealing the biothermodynamic background of virus-host interaction) could help us to understand pathogenesis of Ebola virus disease (earlier known as the Ebola hemorrhagic fever). In this paper for the first time the empirical formula, thermodynamic properties of biosynthesis (including the driving force of virus multiplication in the susceptible host), binding constant and thermodynamic properties of binding are reported. Thermodynamic data for Ebola virus were compared with data for SARS-CoV-2 to explain why SARS-CoV-2 has caused a pandemic, while Ebola remains on local epidemic level. The empirical formula of the Ebola virus was found to be CH<sub>1.569</sub>O<sub>0.3281</sub>N<sub>0.2786</sub>P<sub>0.00173</sub>S<sub>0.00258</sub>. Standard Gibbs energy of biosynthesis of the Ebola virus nucleocapsid is -151.59 kJ/C-mol.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"22 ","pages":"Article 100236"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597532/pdf/","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352222000342","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 12
Abstract
Ebola virus is among the most dangerous, contagious and deadly etiological causes of viral diseases. However, Ebola virus has never extensively spread in human population and never have led to a pandemic. Why? The mechanistic biophysical model revealing the biothermodynamic background of virus-host interaction) could help us to understand pathogenesis of Ebola virus disease (earlier known as the Ebola hemorrhagic fever). In this paper for the first time the empirical formula, thermodynamic properties of biosynthesis (including the driving force of virus multiplication in the susceptible host), binding constant and thermodynamic properties of binding are reported. Thermodynamic data for Ebola virus were compared with data for SARS-CoV-2 to explain why SARS-CoV-2 has caused a pandemic, while Ebola remains on local epidemic level. The empirical formula of the Ebola virus was found to be CH1.569O0.3281N0.2786P0.00173S0.00258. Standard Gibbs energy of biosynthesis of the Ebola virus nucleocapsid is -151.59 kJ/C-mol.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.