The use of residual streams from agricultural production and food consumption containing animal proteins entails the risk of disease transmission as illustrated by the epidemics of bovine spongiform encephalopathy (BSE) and African swine fever. To combat this risk, the use of animal proteins in livestock feed was banned in the European Union, resulting in a drain of valuable proteins from the agricultural system. With an increasing call for a circular food system, the use of residual streams as a feed ingredient needs to be reconsidered with the associated disease risks being assessed and mitigated where needed. In this study, we assessed the BSE risk of bovine spray-dried red blood cells (SDRBC) as an ingredient of aquafeed. Fish fed with bovine SDRBC could indirectly result in exposure of ruminants to BSE infectivity because one of the exemptions of the feed ban is the use of fishmeal as an ingredient in calf milk replacers. A quantitative risk model was built to evaluate the BSE infectivity present in blood sourced from a slaughtered BSE-infected cow and the reduction of infectivity due to processing steps along the production chain. The end point of the model was the BSE infectivity, expressed in cattle oral ID50 (CoID50), reaching calves fed calf milk replacer containing fishmeal, and the corresponding probability that this will result in at least one new BSE infection.
The expected BSE infectivity in blood from a BSE-infected cow at the clinical end state of infection is 0.75 CoID50 (median value). Infectivity in blood mainly results from cross-contamination with brain tissue during stunning at the slaughterhouse. The initial infectivity is reduced along the pathway from slaughtered cow to calf milk replacer, with the highest reduction achieved by clearance of infectivity by fish fed bovine SDRBC as an ingredient of aquafeed, although this parameter has high uncertainty. The final infectivity reaching calves via inclusion of fishmeal in calf milk replacer is estimated to be very low (median value: 1.1 × 10−5 CoID50). Assuming an exponential dose-response model, this corresponds with an expected probability that < 10 out of a million slaughtered BSE-infected cows will result in new BSE infections, which is far below the threshold value of 1 for the basic reproduction number (R0) to initiate a new epidemic. We thus conclude that it is very unlikely that the use of bovine SDRBC as ingredient of aquafeed will result in a new BSE epidemic in cattle. What-if analysis indicated that this conclusion is robust, despite high uncertainty for some input parameters.
In this study is presented a procedure for surveillance data-driven risk assessment, which can be used to inform inter-sectorial Campylobacter risk-based control, e.g. within National Action Plans and One Health (OH) systems. Campylobacter surveillance data (2019 to 2022) and a published quantitative microbial risk assessment (QMRA) model were used, to show the procedure. Moreover, an interface tool was developed in Excel for showing descriptive statistics on measured apparent flock prevalence (AP) and concentrations (colony forming units per gram, cfu/g) on the meat, together with their related QMRA outputs. Currently (mid-2024), Danish fresh broiler meat is produced by four slaughterhouse companies (A, B, C and D), where approximately 30 % of the annually slaughtered broiler flocks are randomly culture tested, on one leg skin (LS) sample per flock sampled from chilled carcasses. Data variables were: date of sampling, farm-ID, within farm house-ID, flock-ID, slaughterhouse name, sample-ID, and Campylobacter concentrations. Flocks were classified as carcass positive with a concentration ≥ 10 cfu/g. The data was fed into the QMRA model to assess: a) the average risk of human campylobacteriosis per serving (during a month or year), and b) the monthly/annual risk of 2022 relative (RR) to the baseline (average) risk from the previous three years. The descriptive statistics and the risk assessment (RA) were carried out at national level and for each slaughterhouse. In 2022, the national RR was 1.03, implying that the average annual risk increased by approximately 3 % compared to the baseline. Nevertheless, for slaughterhouses A, B and D, the annual risk decreased by ≈ 22 %, 21 % and 43 %, respectively; whereas for slaughterhouse C it increased by 48 %. Monthly risk estimates showed seasonal variations, according to the visualized changes of AP and meat contaminations. The national monthly RR was >1 in July and from September to December. During those months: slaughterhouse C had always RR > 1, slaughterhouse A had a relative increase of risk in July, slaughterhouse B in July and November, and slaughterhouse D in October and December. The procedure and the tools used in this study, allow identifying the impact of seasonality and food-chain stages (i.e. slaughterhouses and their broilers sourcing farms) on the risk per serving, so that Campylobacter risk-based control could be implemented accordingly, from farm to fork, across consecutive surveillance periods. The same principles could be applied in other countries, food chains, and/or for other foodborne pathogens, when similar data and QMRA models are available.
Consumption of drinking water containing pathogenic microorganisms may pose serious health risks from waterborne diseases. Quantifying such risks is essential for guiding interventions and policy decisions. Quantitative microbial risk assessment (QMRA) is a very useful method to estimate the public's risk of infection from disease-causing microorganisms in water sources. QMRA of drinking water production process is limited worldwide and so far no such QMRA study has been conducted in Bangladesh. Moreover, climate and socio-economic changes may impact waterborne pathogens and associated health risks, but to what extent remains unclear, because comprehensive QMRA by taking into account combined impact of climatic and socio-economic factors has never been done worldwide so far. In this study, the Swedish QMRA tool was applied to evaluate public health risk from drinking water production process in Dhaka, Bangladesh as a case study. At first, current risk was quantified, and then the potential future risk was projected by taking into account climate and socio-economic factors. The results revealed that the annual infection risks at the current (2020s) baseline condition were below the acceptable risk threshold 10–4 infections per person per year (as proposed by several USEPA scientists) for all three pathogens Salmonella, norovirus and Giardia. However, after extreme events with sewer overflow and agricultural runoff, norovirus violates the acceptable risk thresholds, and the risks for Salmonella and Giardia are in borderline. The selected sustainable future scenario showed some improvement in terms of annual infection risks, while the uncontrolled scenario resulted in substantially higher infection risks both in the near and far future compared to the current scenarios. installment of a UV treatment step as an additional treatment barrier resulted in significant infection risk reduction. According to the sensitivity analysis results, socio-economic factors such as human population, livestock, and pathogen removal in wastewater were found to have greater influence on the infection risks, compared to climate change. The study can help policy makers and water managers to identify interventions to reduce the burden of disease on the population. The tool can be used to assess the health risk associated with drinking water production process in other areas of the world with similar characteristics.