Tracking Chromosomal Origins in the Northern Italy System of Metacentric Races of the House Mouse.

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Cytogenetic and Genome Research Pub Date : 2022-01-01 DOI:10.1159/000527106
Mabel D Giménez, Jonathan J Hughes, Moira Scascitelli, Sofia I Gabriel, Daniel W Förster, Thadsin Panithanarak, Heidi C Hauffe, Jeremy B Searle
{"title":"Tracking Chromosomal Origins in the Northern Italy System of Metacentric Races of the House Mouse.","authors":"Mabel D Giménez,&nbsp;Jonathan J Hughes,&nbsp;Moira Scascitelli,&nbsp;Sofia I Gabriel,&nbsp;Daniel W Förster,&nbsp;Thadsin Panithanarak,&nbsp;Heidi C Hauffe,&nbsp;Jeremy B Searle","doi":"10.1159/000527106","DOIUrl":null,"url":null,"abstract":"<p><p>The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into \"systems.\" Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation (\"zonal raciation\"). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of FST and RST, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal systems.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000527106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into "systems." Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation ("zonal raciation"). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of FST and RST, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利北部家鼠元中心种族系统的染色体起源追踪。
西欧家鼠染色体多样,二倍体核型从标准的40条远心染色体到22条染色体不等。核型通过2个远中心的罗伯逊(Rb)融合成一个单一的元中心进行修饰,在固定时反复发生,整个手臂的相互易位(疣)产生额外的新核型。已经确定了超过100个元中心种群(染色体种族),在地理上聚集成“系统”。系统内的染色体种族经常杂交,新的种族可能通过这种杂交出现(“带状化”)。我们希望确定一个系统中染色体种族独立进化或共享共同祖先的程度。来自杂交染色体种族的染色体之间的重组可以消除与特定的元中心相关的信号,使推断具有挑战性。然而,染色体种族特异性的着丝粒附近的重组减少,使着丝粒附近的标记成为解决这一问题的理想选择。对于北意大利系统(NIS),我们使用着丝粒附近的微卫星标记来验证先前关于5个染色体种族进化关系的假设。我们选择了来自染色体1、3、4和6的标记,所有这些标记都包含至少2个NIS定中心群体中定中心的一条臂。我们使用FST和RST的估计值,以及主成分分析和相邻连接的系统发育分析来推断这5个染色体种族与相邻标准核型小鼠之间的进化关系。我们表明,元中心群体形成了一个单独的群体,不同于标准群体,与他们的共同起源一致,并与染色体重排的简约序列一致,以解释染色体种族的关系。该系统中染色体种族的起源和进化可能涉及Rb融合,这解释了二倍体数量低至22的染色体种族的发生。然而,疣和带状化也被推断出来,在密切相关的染色体种族中,1号染色体罕见地出现在不同的中心性中,几乎可以肯定地解释为疣。我们对着丝粒微卫星的研究结果与上述情况一致,再次说明了着丝粒区域标记物在家鼠染色体系统中测试进化假设的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytogenetic and Genome Research
Cytogenetic and Genome Research 生物-细胞生物学
CiteScore
3.10
自引率
5.90%
发文量
25
审稿时长
1 months
期刊介绍: During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.
期刊最新文献
Novel 10q21.1-q22.1 duplication in a boy with minor facial dysmorphism, mild intellectual disability, autism spectrum disorder -like phenotype, and short stature. Dosage effect of the Ph1 locus on homologous crossovers in a segment of chromosome 1B of bread wheat, Triticum aestivum L. Clinical Findings in a Series of Thirty Eight Patients with Williams-Beuren Syndrome. Prenatal Diagnosis of Fetuses with 4q35 Deletion: Case Series and Review of the Literature. In silico Characterization of Satellitomes and Cross-Amplification of Putative satDNAs in Two Species of the Hypostomus ancistroides Complex (Siluriformes, Loricariidae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1