{"title":"Animal models in systemic sclerosis: an update.","authors":"Xiongjie Bi, Tingting Mills, Minghua Wu","doi":"10.1097/BOR.0000000000000967","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by early inflammation followed by excessive fibrosis in the skin and internal organs. Enhancing our comprehension of SSc pathogenesis is essential to develop effective therapeutic strategies. Animal models that mimic one or more aspects of SSc have been proven to be a valuable resource for investigating disease mechanisms. This review aims to provide an updated overview of the existing SSc animal models and the potentially relevant pathways to SSc pathogenesis.</p><p><strong>Recent findings: </strong>This review focuses on the most recently generated and investigated animal models, which delve into novel pathways beyond existing models or employ genetic technologies to gain a deeper understanding of SSc pathogenesis including activation of early type I interferon (IFN) signaling pathway, immune cell function and pulmonary artery hypertension (PAH).</p><p><strong>Summary: </strong>While no single animal model can fully replicate SSc, a combination of different models can offer valuable insights into the pathways involved in the onset and advancement of the SSc. These insights can prove animal models as a crutial preclinical tool for developing effective treatments for SSc.</p>","PeriodicalId":11145,"journal":{"name":"Current opinion in rheumatology","volume":" ","pages":"364-370"},"PeriodicalIF":5.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in rheumatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/BOR.0000000000000967","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by early inflammation followed by excessive fibrosis in the skin and internal organs. Enhancing our comprehension of SSc pathogenesis is essential to develop effective therapeutic strategies. Animal models that mimic one or more aspects of SSc have been proven to be a valuable resource for investigating disease mechanisms. This review aims to provide an updated overview of the existing SSc animal models and the potentially relevant pathways to SSc pathogenesis.
Recent findings: This review focuses on the most recently generated and investigated animal models, which delve into novel pathways beyond existing models or employ genetic technologies to gain a deeper understanding of SSc pathogenesis including activation of early type I interferon (IFN) signaling pathway, immune cell function and pulmonary artery hypertension (PAH).
Summary: While no single animal model can fully replicate SSc, a combination of different models can offer valuable insights into the pathways involved in the onset and advancement of the SSc. These insights can prove animal models as a crutial preclinical tool for developing effective treatments for SSc.
期刊介绍:
A high impact review journal which boasts an international readership, Current Opinion in Rheumatology offers a broad-based perspective on the most recent and exciting developments within the field of rheumatology. Published bimonthly, each issue features insightful editorials and high quality invited reviews covering two or three key disciplines which include vasculitis syndromes, medical physiology and rheumatic diseases, crystal deposition diseases and rheumatoid arthritis. Each discipline introduces world renowned guest editors to ensure the journal is at the forefront of knowledge development and delivers balanced, expert assessments of advances from the previous year.