Localized estimation of electromagnetic sources underlying event-related fields using recurrent neural networks.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of neural engineering Pub Date : 2023-08-23 DOI:10.1088/1741-2552/acef94
Jamie A O'Reilly, Judy D Zhu, Paul Sowman
{"title":"Localized estimation of electromagnetic sources underlying event-related fields using recurrent neural networks.","authors":"Jamie A O'Reilly,&nbsp;Judy D Zhu,&nbsp;Paul Sowman","doi":"10.1088/1741-2552/acef94","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. To use a recurrent neural network (RNN) to reconstruct neural activity responsible for generating noninvasively measured electromagnetic signals.<i>Approach</i>. Output weights of an RNN were fixed as the lead field matrix from volumetric source space computed using the boundary element method with co-registered structural magnetic resonance images and magnetoencephalography (MEG). Initially, the network was trained to minimise mean-squared-error loss between its outputs and MEG signals, causing activations in the penultimate layer to converge towards putative neural source activations. Subsequently, L1 regularisation was applied to the final hidden layer, and the model was fine-tuned, causing it to favour more focused activations. Estimated source signals were then obtained from the outputs of the last hidden layer. We developed and validated this approach with simulations before applying it to real MEG data, comparing performance with beamformers, minimum-norm estimate, and mixed-norm estimate source reconstruction methods.<i>Main results</i>. The proposed RNN method had higher output signal-to-noise ratios and comparable correlation and error between estimated and simulated sources. Reconstructed MEG signals were also equal or superior to the other methods regarding their similarity to ground-truth. When applied to MEG data recorded during an auditory roving oddball experiment, source signals estimated with the RNN were generally biophysically plausible and consistent with expectations from the literature.<i>Significance</i>. This work builds on recent developments of RNNs for modelling event-related neural responses by incorporating biophysical constraints from the forward model, thus taking a significant step towards greater biological realism and introducing the possibility of exploring how input manipulations may influence localised neural activity.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acef94","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Objective. To use a recurrent neural network (RNN) to reconstruct neural activity responsible for generating noninvasively measured electromagnetic signals.Approach. Output weights of an RNN were fixed as the lead field matrix from volumetric source space computed using the boundary element method with co-registered structural magnetic resonance images and magnetoencephalography (MEG). Initially, the network was trained to minimise mean-squared-error loss between its outputs and MEG signals, causing activations in the penultimate layer to converge towards putative neural source activations. Subsequently, L1 regularisation was applied to the final hidden layer, and the model was fine-tuned, causing it to favour more focused activations. Estimated source signals were then obtained from the outputs of the last hidden layer. We developed and validated this approach with simulations before applying it to real MEG data, comparing performance with beamformers, minimum-norm estimate, and mixed-norm estimate source reconstruction methods.Main results. The proposed RNN method had higher output signal-to-noise ratios and comparable correlation and error between estimated and simulated sources. Reconstructed MEG signals were also equal or superior to the other methods regarding their similarity to ground-truth. When applied to MEG data recorded during an auditory roving oddball experiment, source signals estimated with the RNN were generally biophysically plausible and consistent with expectations from the literature.Significance. This work builds on recent developments of RNNs for modelling event-related neural responses by incorporating biophysical constraints from the forward model, thus taking a significant step towards greater biological realism and introducing the possibility of exploring how input manipulations may influence localised neural activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的事件相关场下电磁源的局部估计。
目标。使用递归神经网络(RNN)重建负责产生无创测量电磁信号的神经活动。将RNN输出权值固定为基于结构磁共振图像和脑磁图(MEG)共配准的边界元法计算的体积源空间的前导场矩阵。最初,该网络被训练成最小化其输出和MEG信号之间的均方误差损失,从而使倒数第二层的激活收敛于假定的神经源激活。随后,将L1正则化应用于最后的隐藏层,并对模型进行微调,使其倾向于更集中的激活。然后从最后一个隐藏层的输出中获得估计的源信号。在将该方法应用于实际MEG数据之前,我们通过仿真开发并验证了该方法,并将其与波束形成、最小范数估计和混合范数估计源重建方法的性能进行了比较。主要的结果。所提出的RNN方法具有较高的输出信噪比,并且估计源与模拟源之间的相关性和误差相当。重建后的MEG信号与地面真值的相似度也等于或优于其他方法。当应用于听觉漫游古怪实验中记录的MEG数据时,用RNN估计的源信号通常在生物物理上是可信的,并且与文献中的预期一致。这项工作建立在RNNs最近的发展基础上,通过结合前向模型的生物物理约束来模拟与事件相关的神经反应,从而朝着更大的生物真实性迈出了重要的一步,并引入了探索输入操作如何影响局部神经活动的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of neural engineering
Journal of neural engineering 工程技术-工程:生物医学
CiteScore
7.80
自引率
12.50%
发文量
319
审稿时长
4.2 months
期刊介绍: The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels. The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.
期刊最新文献
PDMS/CNT electrodes with bioamplifier for practical in-the-ear and conventional biosignal recordings. DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness. I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks. Integrating spatial and temporal features for enhanced artifact removal in multi-channel EEG recordings. PD-ARnet: a deep learning approach for Parkinson's disease diagnosis from resting-state fMRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1